Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures

    Access Status
    Fulltext not available
    Authors
    Asadi, Mohammad Sadegh
    Rasouli, Vamegh
    Barla, G.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Asadi, Mohammad Sadegh and Rasouli, Vamegh and Barla, Giovanni. 2012. A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures. Rock Mechanics and Rock Engineering. 45 (5): pp. 649-675.
    Source Title
    Rock Mechanics and Rock Engineering
    DOI
    10.1007/s00603-012-0231-4
    ISSN
    07232632
    URI
    http://hdl.handle.net/20.500.11937/36095
    Collection
    • Curtin Research Publications
    Abstract

    Different failure modes during fracture shearing have been introduced including normal dilation or sliding, asperity cut-off and degradation. Attempts have been made to study these mechanisms using analytical, experimental and numerical methods. However, the majority of the existing models simplify the problem, which leads to unrealistic results. With this in mind, the aim of this paper is to simulate the mechanical behaviour of synthetic and rock fracture profiles during direct shear tests by using the two-dimensional particle flow computer code PFC2D. Correlations between the simulated peak shear strength and the fracture roughness parameter DR1 recently proposed by Rasouli and Harrison (2010) are developed. Shear test simulations are carried out with PFC2D and the effects of the geometrical features as well as the model micro-properties on the fracture shear behaviour are studied. The shear strength and asperity degradation processes of synthetic profiles including triangular, sinusoidal and randomly generated profiles are analysed. Different failure modes including asperity sliding, cut-off, and asperity degradation are explicitly observed and compared with the available models. The DR1 parameter is applied to the analysis of synthetic and rock fracture profiles. Accordingly, correlations are developed between DR1 and the peak shear strength obtained from simulations and by using analytical solutions. The results are shown to be in good agreement with the basic understanding of rock fracture shear behaviour and asperity contact degradation.

    Related items

    Showing items related by title, author, creator and subject.

    • Experimental and PFC2D numerical study of progressive shear behaviour of single rough rock fractures
      Asadi, Mohammad Sadegh (2011)
      This thesis investigates the progressive shear behaviour and asperity degradation of single rough rock fractures using 2D numerical simulations and laboratory experiments.The particle flow code (PFC) was chosen for ...
    • Numerical simulations of fluid flow through a single rough walled fracture
      Hosseinian, Armin (2011)
      The morphological properties of rock fractures may have a significant influence on their hydromechanical behaviour. Fracture surface roughness could change the fluid flow regime from laminar to turbulent, while it causes ...
    • Physical simulation of asperity degradation using laboratorial shear tests of artificial fractures
      Asadi, Mohammad Sadegh; Rasouli, Vamegh (2012)
      Hydromechanical behaviour of sheared rock fractures is complex as it highly depends on the evolution of surface roughness after the degradation of asperities. A new fracture shear cell (FSC) which is able to conduct tests ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.