The carbohydrate-binding promiscuity of Euonymus europaeus lectin is predicted to involve a single binding site
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
Euonymus europaeus lectin (EEL) is a carbohydrate-binding protein derived from the fruit of the European spindle tree. EEL was first identified for its erythrocyte agglutinating properties and specificity for B and H blood groups. However, a detailed molecular picture of the structural basis of carbohydrate recognition by EEL remains to be developed. In this study, we performed fluorescence titrations of a range of carbohydrates against EEL. Binding of EEL to a wide range of carbohydrates was observed, including a series of blood group-related carbohydrates, mannosides, chitotriose and sialic acid. Affinity was strongest for carbohydrates with H-related structures and the B trisaccharide. A homology model of EEL was produced from templates identified using the HHPred server, which employs hidden Markov models (HMMs) to identify templates. The HMM approach identified that the best templates for EEL were proteins featuring a ricin B-like (R-type) fold. Separate templates were used to model the core and binding site regions of the lectin. Through the use of constrained docking and spatial comparison with a template ligand, binding modes for the carbohydrate ligands were predicted. A relationship between the experimental binding energies and the computed binding energies of the selected docked poses was determined and optimized. Collectively, our results suggest that EEL utilizes a single site for recognition of carbohydrates terminating in a variety of monosaccharides.
Related items
Showing items related by title, author, creator and subject.
-
Gandhi, Neha Sureshchandra (2011)Glycosaminoglycans (GAGs) are ubiquitous complex carbohydrate molecules present on the cell surfaces and in extracellular matrices (ECM) of vertebrate and invertebrate tissues. The interactions of sulphated GAGs such as ...
-
Agostino, Mark; Yuriev, E.; Ramsland, P. (2011)Recognition of pathogen-associated carbohydrates by a broad range of carbohydrate-binding proteins is central to both adaptive and innate immunity. A large functionally diverse group of mammalian carbohydrate-binding ...
-
Agostino, Mark; Sandrin, M.; Thompson, P.; Ramsland, P.; Yuriev, E. (2011)Carbohydrate–antibody interactions mediate many cellular processes and immune responses. Carbohydrates expressed on the surface of cells serve as recognition elements for particular cell types, for example, in the ABO(H) ...