Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Lysosomal cystine accumulation promotes mitochondrial depolarization and induction of redox-sensitive genes in human kidney proximal tubular cells

    Access Status
    Open access via publisher
    Authors
    Sumayao, R.
    McEvoy, B.
    Newsholme, Philip
    McMorrow, T.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sumayao, R. and McEvoy, B. and Newsholme, P. and McMorrow, T. 2016. Lysosomal cystine accumulation promotes mitochondrial depolarization and induction of redox-sensitive genes in human kidney proximal tubular cells. Journal of Physiology. 594 (12): pp. 3353-3370.
    Source Title
    Journal of Physiology
    DOI
    10.1113/JP271858
    ISSN
    0022-3751
    School
    School of Biomedical Sciences
    URI
    http://hdl.handle.net/20.500.11937/23800
    Collection
    • Curtin Research Publications
    Abstract

    Key points: Cystine is a disulphide amino acid that is normally generated in the lysosomes by the breakdown of cystine-containing proteins. Previously, we demonstrated that lysosomal cystine accumulation in kidney proximal tubular epithelial cells (PTECs) dramatically reduced glutathione (GSH) levels, which may result in the disruption of cellular redox balance. In the present study, we show that lysosomal cystine accumulation following CTNS gene silencing in kidney PTECs resulted in elevated intracellular reactive oxygen species production, reduced antioxidant capacity, induction of redox-sensitive proteins, altered mitochondrial integrity and augmented cell death. These alterations may represent different facets of a unique cascade leading to tubular dysfunction initiated by lysosomal cystine accumulation and may present a clear disadvantage for cystinotic PTECs in vivo. Cystine depletion by cysteamine afforded cytoprotection in CTNS knockdown cells by reducing oxidative stress, normalizing intracellular GSH and ATP content, and preserving cell viability. Cystine is a disulphide amino acid that is normally generated within the lysosomes through lysosomal-based protein degradation and via extracellular uptake of free cystine. In the autosomal recessive disorder, cystinosis, a defect in the CTNS gene results in excessive lysosomal accumulation of cystine, with early kidney failure a hallmark of the disease. Previously, we demonstrated that silencing of the CTNS gene in kidney proximal tubular epithelial cells (PTECs) resulted in an increase in intracellular cystine concentration coupled with a dramatic reduction in the total GSH content. Because of the crucial role of GSH in maintaining the redox status and viability of kidney PTECs, we assessed the effects of CTNS knockdown-induced lysosomal cystine accumulation on intracellular reactive oxygen species (ROS) production, activity of classical redox-sensitive genes, mitochondrial integrity and cell viability. Our results showed that lysosomal cystine accumulation increased ROS production and solicitation to oxidative stress (OS). This was associated with the induction of classical redox-sensitive proteins, NF-?B, NRF2, HSP32 and HSP70. Cystine-loaded PTECs also displayed depolarized mitochondria, reduced ATP content and augmented apoptosis. Treatment of CTNS knockdown PTECs with the cystine-depleting agent cysteamine resulted in the normalization of OS index, increased GSH and ATP content, and preservation of cell viability. Taken together, the alterations observed in cystinotic cells may represent different facets of a cascade leading to tubular dysfunction and, in combination with cysteamine therapy, may offer a novel link for the attenuation of renal injury and preservation of functions of other organs affected in cystinosis.

    Related items

    Showing items related by title, author, creator and subject.

    • Cystine accumulation attenuates insulin release from the pancreatic beta-cell due to elevated oxidative stress and decreased ATP levels.
      McEvoy, B.; Sumayao, R.; Slattery, C.; McMorrow, T.; Newsholme, Philip (2015)
      The pancreatic beta-cell has reduced antioxidant defences making it more susceptible to oxidative stress. In cystinosis, a lysosomal storage disorder, an altered redox state may contribute to cellular dysfunction. This ...
    • A uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropionate induces cell damage to proximal tubular cells via the generation of a radical intermediate
      Miyamoto, Y.; Iwao, Y.; Mera, K.; Watanabe, H.; Kadowaki, D.; Ishima, Y.; Chuang, Victor; Sato, K.; Otagiri, M.; Maruyama, T. (2012)
      3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a furan fatty acid uremic toxin (UT) and a substrate for organic ion transporters, contributes to the accumulation of CMPF in renal tubular cells. Although oxidative ...
    • A uremic toxin 3-carboxy-4-methyl-5-propyl-2-furanpropionate accumulates in proximal tubular cells and induces cell damage through increasing oxidative stress
      Miyamoto, Y.; Iwao, Y.; Watanabe, H.; Kadowaki, D.; Ishima, Y.; Chuang, Victor; Sato, K.; Otagiri, M.; Maruyama, T. (2012)
      Introduction and Aims: 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) is a furan fatty acid derivative, a uremic toxin and a substrate of transporters for organic anions that contribute to the accumulation of CMPF ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.