Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Poikilitic textures, heteradcumulates and zoned orthopyroxenes in the Ntaka Ultramafic Complex, Tanzania: Implications for crystallization mechanisms of oikocrysts

    Access Status
    Open access via publisher
    Authors
    Barnes, S.
    Mole, D.
    Le Vaillant, M.
    Campbell, M.
    Verrall, M.
    Roberts, M.
    Evans, Noreen
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Barnes, S. and Mole, D. and Le Vaillant, M. and Campbell, M. and Verrall, M. and Roberts, M. and Evans, N. 2016. Poikilitic textures, heteradcumulates and zoned orthopyroxenes in the Ntaka Ultramafic Complex, Tanzania: Implications for crystallization mechanisms of oikocrysts. Journal of Petrology. 57 (6): pp. 1171-1198.
    Source Title
    Journal of Petrology
    DOI
    10.1093/petrology/egw036
    ISSN
    0022-3530
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/23913
    Collection
    • Curtin Research Publications
    Abstract

    The late Proterozoic Ntaka Ultramafic Complex is a body of dominantly pyroxenitic cumulate rocks containing cyclic alternations of olivine-orthopyroxene cumulates. Chemical zoning in the pyroxenes has been imaged at 25-40 µm resolution using desktop microbeam X-ray fluorescence mapping followed up with laser ablation-inductively coupled plasma mass spectrometry analysis for minor and trace elements on selected samples. Poikilitic and granular harzburgites are finely intermingled, in some cases on a centimetre scale in the same thin section. Poikilitic varieties display spectacular textures, ranging from isolated equant orthopyroxene oikocrysts within olivine-rich heteradcumulate harzburgites to rocks composed entirely of interlocking centimetre-sized anhedral orthopyroxene oikocrysts containing sharply bounded idiomorphic Cr-enriched cores. The poikilitic harzburgites are interlayered with cumulate pyroxenites in which orthopyroxene grains show a variety of zoning patterns: Cr-rich cores similar to those in the oikocrysts; sharply bounded oscillatory zoned cores; and reverse zoning with Cr-poor cores and Cr-enriched rims. A further variation is the presence of a mingled harzburgite lithology in which dunite or poikilitic harzburgite is invaded on a centimetre scale by diffuse vein networks or patches of coarse orthopyroxenite. This range of textures and lithologies attests to a more complex set of processes than implied by the standard cumulus theory model in which oikocrysts are considered to have crystallized from intercumulus liquid within a permeable crystal mush. A range of hypotheses is proposed, including infiltration metasomatism of original olivine cumulates by migrating orthopyroxene-saturated pore fluid; however, the textural relationships, whole-rock chemistry and Cr zoning within the grains can best be explained by a model in which the orthopyroxene oikocrysts form in part or whole as mechanically accumulated cumulus grains. The complexity of zoning patterns is attributed to stirring of entrained olivine and orthopyroxene crystals within a heterogeneous flowing crystal mush, where the transporting magma has a wide range of silica contents owing to poorly stirred incorporation of siliceous country-rock material. The Cr-rich orthopyroxenite component grew from Sienriched chromite-saturated magma. Mingled lithologies developed after accumulation as a result of percolation and infiltration metasomatism by Si-enriched liquid derived by melting of xenoliths within the crystal pile. The model may be more generally applicable: dunite-harzburgite cycles, common in many layered intrusions, may reflect variable degrees of contamination rather than cycles of fractional crystallization and replenishment.

    Related items

    Showing items related by title, author, creator and subject.

    • The evolution of mafic and ultramafic rocks of the Mesoproterozoic Fraser Zone, Albany-Fraser Orogen, and implications for the Ni-Cu sulphide potential of the region
      Maier, W.; Smithies, R.; Spaggiari, C.; Barnes, S.; Kirkland, Chris; Kiddie, O.; Roberts, M. (2016)
      The Albany–Fraser Orogen is located along the southern and southeastern margins of the Archean Yilgarn Craton and formed from at least c. 1810 to 1140 Ma during reworking of the craton, accompanied by variable additions ...
    • Ultra-refractory mantle within oceanic plateau: Petrology of the spinel harzburgites from Lac Michèle, Kerguelen Archipelago
      Wasilewski, B.; Doucet, Luc-Serge; Moine, B.; Beunon, H.; Delpech, G.; Mattielli, N.; Debaille, V.; Delacour, A.; Grï goire, M.; Guillaume, D.; Cottin, J. (2017)
      The study presents major and trace element compositions of whole-rocks and minerals of 24 spinel harzburgite xenoliths from the Lac Michèle locality in the northern part of the Kerguelen Archipelago (South Indian Ocean). ...
    • The role of reacting solution and temperature on compositional evolution during harzburgite alteration: Constraints from the Mesoarchean Nuasahi Massif (eastern India)
      Majumdar, A.; Hövelmann, J.; Mondal, S.; Putnis, Andrew (2016)
      We investigate the microtextural–chemical features of partially serpentinized harzburgites from the lower ultramafic unit of the Mesoarchean Nuasahi Massif, eastern India, in order to understand the role of reacting fluid ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.