Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling

    19413_19413.pdf (920.5Kb)
    Access Status
    Open access
    Authors
    Wright, Kathleen
    Smith, A.
    Hudson-Edwards, K.
    Dubbin, W.
    Date
    2006
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Smith, Adrian M.L. and Hudson-Edwards, Karen A. and Dubbin, William E. and Wright, Kate. 2006. Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling. Geochimica et Cosmochimica Acta 70: 608-621.
    Source Title
    Geochimica et Cosmochimica Acta
    DOI
    10.1016/j.gca.2005.09.024
    Faculty
    Department of Applied Chemistry
    Division of Engineering, Science and Computing
    Faculty of Science
    Remarks

    NOTICE: this is the author’s version of a work that was accepted for publication in Geochimica et Cosmochimica Acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Geochimica et Cosmochimica Acta, Vol. 70, (2006). DOI: 10.1016/j.gca.2005.09.024

    URI
    http://hdl.handle.net/20.500.11937/23968
    Collection
    • Curtin Research Publications
    Abstract

    Jarosite [KFe3(SO4)2(OH)6] is a mineral that is common in acidic, sulphate-rich environments, such as acid sulphate soils derived from pyrite-bearing sediments, weathering zones of sulphide ore deposits and acid mine or acid rock drainage (ARD/AMD) sites. The structure of jarosite is based on linear tetrahedral?octahedral?tetrahedral (T?O?T) sheets, made up from slightly distorted FeO6 octahedra and SO4 tetrahedra. Batch dissolution experiments carried out on synthetic jarosite at pH 2, to mimic environments affected by ARD/AMD, and at pH 8, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2), suggest first order dissolution kinetics. Both dissolution reactions are incongruent, as revealed by non-ideal dissolution of the parent solids and, in the case of the pH 8 dissolution, because a secondary goethite precipitate forms on the surface of the dissolving jarosite grains. The pH 2 dissolution yields only aqueous K, Fe, and SO4. Aqueous, residual solid, and computational modelling of the jarosite structure and surfaces using the GULP and MARVIN codes, respectively, show for the first time that there is selective dissolution of the A- and T-sites, which contain K and SO4, respectively, relative to Fe, which is located deep within the T?O?T jarosite structure. These results have implications for the chemistry of ARD/AMD waters, and for understanding reaction pathways of ARD/AMD mineral dissolution.

    Related items

    Showing items related by title, author, creator and subject.

    • Dissolution of lead- and lead-arsenic-jarosites at pH 2 and 8 and 20 C: Insights from batch experiments
      Wright, Kathleen; Smith, A.; Dubbin, W.; Hudson-Edwards, K. (2006)
      Lead- and Pb-As-jarosites are minerals common to acidic, sulphate-rich environments, including weathering zones of sulphide ore deposits and acid rock or acid mine drainage (ARD/AMD) sites, and often form on or near galena. ...
    • Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation
      Kartal, M.; Xia, F.; Ralph, D.; Rickard, William ; Renard, F.; Li, W. (2020)
      © 2019 Elsevier B.V. Chalcopyrite (CuFeS2) is the primary ore mineral for copper, but leaching of this mineral under atmospheric conditions is slow due to the formation of surface passivating phases such as elemental ...
    • Oxidative dissolution of chalcopyrite in ferric media: an x-ray photoelectron spectroscopy study
      Parker, Andrew Donald (2008)
      The oxidative dissolution of chalcopyrite in ferric media often produces incomplete copper recoveries. The incomplete recoveries have been attributed to inhibition caused by the formation of a metal deficient sulphide and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.