Show simple item record

dc.contributor.authorWang, L.
dc.contributor.authorLi, S.
dc.contributor.authorTeo, Kok Lay
dc.date.accessioned2017-01-30T12:40:26Z
dc.date.available2017-01-30T12:40:26Z
dc.date.created2011-03-02T20:01:34Z
dc.date.issued2010
dc.identifier.citationWang, Q.L. and Li, S.J. and Teo, K.L. 2010. Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization. Optimization Letters. 4 (3): pp. 425-437.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/23999
dc.identifier.doi10.1007/s11590-009-0170-5
dc.description.abstract

In this paper, generalized higher-order contingent (adjacent) derivatives of set-valued maps are introduced and some of their properties are discussed. Under no any convexity assumptions, necessary and sufficient optimality conditions are obtained for weakly efficient solutions of set-valued optimization problems by employing the generalized higher-order derivatives.

dc.publisherSpringer Verlag
dc.subjectNonconvex set-valued optimization - Generalized higher-order contingent (adjacent) derivatives - Gerstewitz’s nonconvex separation functional - Weakly efficient solutions - Higher-order optimality conditions
dc.titleHigher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization
dc.typeJournal Article
dcterms.source.volume4
dcterms.source.startPage425
dcterms.source.endPage437
dcterms.source.issn18624472
dcterms.source.titleOptimization Letters
curtin.note

The original publication is available at: http://www.springerlink.com

curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record