Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia

    198430_198430.pdf (2.964Mb)
    Access Status
    Open access
    Authors
    Garcia, Rodrigo
    Fearns, Peter
    McKinna, Lachlan
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Garcia, Rodrigo A. and Fearns, Peter R.C.S. and McKinna, Lachlan I.W. 2014. Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia. Remote Sensing of Environment. 147: pp. 186-205.
    Source Title
    Remote Sensing of Environment
    DOI
    10.1016/j.rse.2014.03.010
    ISSN
    00344257
    Remarks

    NOTICE: This is the author’s version of a work that was accepted for publication in Remote Sensing of Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Remote Sensing of Environment, Volume 147, 5 May 2014, Pages 186–205. http://dx.doi.org/10.1016/j.rse.2014.03.010

    URI
    http://hdl.handle.net/20.500.11937/24033
    Collection
    • Curtin Research Publications
    Abstract

    The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International Space Station has offered for the first time a dedicated space-borne hyperspectral sensor specifically designed for remote sensing of the coastal environment. However, several processing steps are required to convert calibrated top-of-atmosphere radiances to the desired geophysical parameter(s). These steps add various amounts of uncertainty that can cumulatively render the geophysical parameter imprecise and potentially unusable if the objective is to analyze trends and/or seasonal variability. This research presented here has focused on: (1) atmospheric correction of HICO imagery; (2) retrieval of bathymetry using an improved implementation of a shallow water inversion algorithm; (3) propagation of uncertainty due to environmental noise through the bathymetry retrieval process; (4) issues relating to consistent geo-location of HICO imagery necessary for time series analysis, and; (5) tide height corrections of the retrieved bathymetric dataset. The underlying question of whether a temporal change in depth is detectable above uncertainty is also addressed. To this end, nine HICO images spanning November 2011 to August 2012, over the Shark Bay World Heritage Area, Western Australia, were examined. The results presented indicate that precision of the bathymetric retrievals is dependent on the shallow water inversion algorithm used. Within this study, an average of 70% of pixels for the entire HICO-derived bathymetry dataset achieved a relative uncertainty of less than ± 20%. A per-pixel t-test analysis between derived bathymetry images at successive timestamps revealed observable changes in depth to as low as 0.4 m. However, the present geolocation accuracy of HICO is relatively poor and needs further improvements before extensive time series analysis can be performed.

    Related items

    Showing items related by title, author, creator and subject.

    • Radiometric processing of multitemporal sequences of satellite imagery for surface reflectance retrievals in change detection studies
      Renzullo, Luigi John (2004)
      A relative, lie-value image normalisation (LVIN) procedure was investigated as a means of estimating surface reflectances from sequences of Landsat TM and ETM+ imagery, and standardising image data for change detection ...
    • A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization
      McKinna, Lachlan; Fearns, Peter; Weeks, S.; Werdell, J.; Reichstetter, M.; Franz, B.; Shea, D.; Feldman, G. (2015)
      A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the ...
    • Uncertainty in Hyperspectral Remote Sensing: Analysis of the Potential and Limitation of Shallow Water Bathymetry and Benthic Classification
      Garcia, Rodrigo Alejandro (2015)
      Propagating the inherent uncertainty in hyperspectral remote sensing is key in understanding the limitation and potential of derived bathymetry and benthic classification. Using an improved optimisation algorithm, the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.