Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Solid-State Energetics and Electrostatics: Madelung Constants and Madelung Energies

    Access Status
    Fulltext not available
    Authors
    Glasser, Leslie
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Glasser, Leslie. 2012. Solid-State Energetics and Electrostatics: Madelung Constants and Madelung Energies. Inorganic Chemistry. 51 (4): pp. 2420-2424.
    Source Title
    Inorganic Chemistry
    DOI
    10.1021/ic2023852
    ISSN
    00201669
    School
    Nanochemistry Research Institute (Research Institute)
    Remarks

    The website for Inorganic Chemistry is at: http://pubs.acs.org/journal/inocaj.

    URI
    http://hdl.handle.net/20.500.11937/24179
    Collection
    • Curtin Research Publications
    Abstract

    The Madelung constants of ionic solids relate to their geometry and electrostatic interactions. Furthermore, because of issues in their evaluation, they are also of considerable mathematical interest. The corresponding Madelung (electrostatic, coulomb) energy is the principal contributor to the lattice energies of ionic systems, and these energies largely influence many of their physical properties. The Madelung constants are here defined and their properties considered. A difficulty with their application is that they may be defined relative to various lattice distances, and with various conventions for inclusion of the charges, leading to possible confusion in their use. Instead, the unambiguous Madelung energy, EM, is to be preferred in chemistry. An extensive list of Madelung energies is presented. From this data set, it is observed that there is a strong linear correlation between the lattice energies of ionic solids, UPOT, and their Madelung energies: UPOT/kJ mol–1 = 0.8519EM + 293.9. This correlation establishes that the lattice energy, UPOT, for ionic solids is about 15% smaller than the attractive Madelung energy, the difference arising from the repulsions unaccounted for by the solely coulombic Madelung energy calculation.Correlations of UPOT against EM for alkali metal hydrides and transition metal compounds, each having considerable covalency, show much reduced Madelung contributions to the lattice energy. These correlations permit ready estimation of lattice energies, and are the first to be based on actual data rather than a broad analysis. The independent volume-based thermodynamic (VBT) method, which relies on a separate correlation with the formula unit volume of the ionic material, complements these correlations.

    Related items

    Showing items related by title, author, creator and subject.

    • Simple Route to Lattice Energies in the Presence of Complex Ions
      Glasser, Leslie (2012)
      Lattice energies for ionic materials which separate into independent gaseous ions can be calculated bystandard Born-Haber-Fajans thermochemical cycle procedures, based on the energies of formation of those ions. However, ...
    • Born-Haber-Fajans Cycle Generalized: Linear Energy Relation between Molecules, Crystals, and Metals
      Glasser, Leslie; Von Szentpaly, L. (2006)
      Classical procedures to calculate ion-based lattice potential energies (UPOT) assume formal integral charges on the structural units; consequently, poor results are anticipated when significant covalency is present. To ...
    • Single-ion values for ionic solids of both formation enthalpies, ΔfH(298)ion, and Gibbs Formation Energies, ΔfG(298)ion
      Glasser, Leslie (2013)
      Formation enthalpies, ΔfH(298), are essential thermodynamic descriptors of the stability of materials, with many available from the numerous thermodynamic databases. However, there is a need for predictive methods to ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.