Limits on the stochastic gravitational wave background from the North American Nanohertz Observatory for Gravitational Waves
dc.contributor.author | Demorest, P. | |
dc.contributor.author | Ferdman, R. | |
dc.contributor.author | Gonzalez, M. | |
dc.contributor.author | Nice, D. | |
dc.contributor.author | Ransom, S. | |
dc.contributor.author | Stairs, I. | |
dc.contributor.author | Arzoumanian, Z. | |
dc.contributor.author | Brazier, A. | |
dc.contributor.author | Burke-Spolaor, S. | |
dc.contributor.author | Chamberlin, S. | |
dc.contributor.author | Cordes, J. | |
dc.contributor.author | Ellis, J. | |
dc.contributor.author | Finn, L. | |
dc.contributor.author | Freire, P. | |
dc.contributor.author | Giampanis, S. | |
dc.contributor.author | Jenet, F. | |
dc.contributor.author | Kaspi, V. | |
dc.contributor.author | Lazio, J. | |
dc.contributor.author | Lommen, A. | |
dc.contributor.author | McLaughlin, M. | |
dc.contributor.author | Palliyaguru, N. | |
dc.contributor.author | Perrodin, D. | |
dc.contributor.author | Shannon, Ryan | |
dc.contributor.author | Siemens, X. | |
dc.contributor.author | Stinebring, D. | |
dc.contributor.author | Swiggum, J. | |
dc.contributor.author | Zhu, W. | |
dc.date.accessioned | 2017-01-30T12:43:21Z | |
dc.date.available | 2017-01-30T12:43:21Z | |
dc.date.created | 2016-01-11T20:00:24Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Demorest, P. and Ferdman, R. and Gonzalez, M. and Nice, D. and Ransom, S. and Stairs, I. and Arzoumanian, Z. et al. 2013. Limits on the stochastic gravitational wave background from the North American Nanohertz Observatory for Gravitational Waves. Astrophysical Journal. 762 (2). | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/24501 | |
dc.identifier.doi | 10.1088/0004-637X/762/2/94 | |
dc.description.abstract |
We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are ~30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of hc (1 yr–1) < 7 × 10–15 (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909–3744. | |
dc.title | Limits on the stochastic gravitational wave background from the North American Nanohertz Observatory for Gravitational Waves | |
dc.type | Journal Article | |
dcterms.source.volume | 762 | |
dcterms.source.number | 2 | |
dcterms.source.issn | 0004-637X | |
dcterms.source.title | Astrophysical Journal | |
curtin.department | Curtin Institute of Radio Astronomy (Physics) | |
curtin.accessStatus | Open access via publisher |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |