Comparison of endosymbiotic and free-living Symbiodinium (dinophyceae) diversity in a hawaiian reef environment
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Many scleractinian corals must acquire their endosymbiotic dinoflagellates (genus Symbiodinium) anew each generation from environmental pools, and exchange between endosymbiotic and environmental pools of Symbiodinium (reef waters and sediments) has been proposed as a mechanism for optimizing coral physiology in the face of environmental change. Our understanding of the diversity of Symbiodinium spp. in environmental pools is poor by comparison to that engaged in endosymbiosis, which reflects the challenges of visualizing the genus against the backdrop of the complex and diverse micro-eukaryotic communities found free-living in the environment. Here, the molecular diversity of Symbiodinium living in the waters and sediments of a reef near Coconut Island, O'ahu, Hawai'i, sampled at four hourly intervals over a period of 5 d was characterized using a Symbiodinium-specific hypervariable region of the chloroplast 23S. A comparison of Symbiodinium spp. diversity recovered from environmental samples with the endosymbiotic diversity in coral species that dominate the adjacent reef revealed limited overlap between these communities. These data suggest that the potential for infection, exchange, and/or repopulation of corals with Symbiodinium derived from the environment is limited at this location, a finding that is perhaps consistent with the high proportion of coral species in this geographic region that transmit endosymbionts from generation to generation. © 2009 Phycological Society of America.
Related items
Showing items related by title, author, creator and subject.
-
Stat, Michael; Bird, C.; Pochon, X.; Chasqui, L.; Chauka, L.; Concepcion, G.; Logan, D.; Takabayashi, M.; Toonen, R.; Gates, R. (2011)Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and ...
-
Putnam, H.; Stat, Michael; Pochon, X.; Gates, R. (2012)Flexibility in biological systems is seen as an important driver of macro-ecosystem function and stability. Spatially constrained endosymbiotic settings, however, are less studied, although environmental thresholds of ...
-
Fabina, N.; Putnam, H.; Franklin, E.; Stat, Michael; Gates, R. (2012)Most reef-building corals in the order Scleractinia depend on endosymbiotic algae in the genus Symbiodinium for energy and survival. Significant levels of taxonomic diversity in both partners result in numerous possible ...