Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Frequency-dependent anisotropy of porous rocks with aligned fractures

    232289_232289.pdf (1.552Mb)
    Access Status
    Open access
    Authors
    Galvin, Robert
    Gurevich, Boris
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Galvin, R. and Gurevich, B. 2015. Frequency-dependent anisotropy of porous rocks with aligned fractures. Geophysical Prospecting. 63 (1): pp. 141-150.
    Source Title
    Geophysical Prospecting
    DOI
    10.1111/1365-2478.12177
    ISSN
    0016-8025
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/24587
    Collection
    • Curtin Research Publications
    Abstract

    Naturally fractured reservoirs are becoming increasingly important for oil and gas exploration in many areas of the world. Because fractures may control the permeability of a reservoir, it is important to be able to find and characterize fractured zones. In fractured reservoirs, the wave-induced fluid flow between pores and fractures can cause significant dispersion and attenuation of seismic waves. For waves propagating normal to the fractures, this effect has been quantified in earlier studies. Here we extend normal incidence results to oblique incidence using known expressions for the stiffness tensors in the low- and high-frequency limits. This allows us to quantify frequency-dependent anisotropy due to the wave-induced flow between pores and fractures and gives a simple recipe for computing phase velocities and attenuation factors of quasi-P and SV waves as functions of frequency and angle. These frequency and angle dependencies are concisely expressed through dimensionless velocity anisotropy and attenuation anisotropy parameters. It is found that, although at low frequencies, the medium is close to elliptical (which is to be expected as a dry medium containing a distribution of penny-shaped cracks is known to be close to elliptical); at high frequencies, the coupling between P-wave and SV-wave results in anisotropy due to the non-vanishing excess tangential compliance.

    Related items

    Showing items related by title, author, creator and subject.

    • Elastic wave attenuation, dispersion and anisotropy in fractured porous media
      Galvin, Robert (2007)
      Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
    • Effects of fractures on seismic waves in poroelastic formations
      Brajanovski, Miroslav (2004)
      Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...
    • Frequency-dependent Seismic Anisotropy of Porous Rocks with Penny-shaped Cracks
      Brown, Luke; Gurevich, Boris (2004)
      Porous reservoirs with aligned fractures exhibit frequency-dependent seismic anisotropy because of wave-induced fluid flow between pores and fractures. To relate the elastic properties of porous rocks with aligned fractures ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.