Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This article was published in Oncology following peer review and can also be viewed on the journal’s website at http://bmjopen.bmj.com/
This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by-nc/3.0/
Collection
Abstract
Objectives: Using the prediction of cancer outcome as a model, we have tested the hypothesis that through analysing routinely collected digital data contained in an electronic administrative record (EAR), using machine-learning techniques, we could enhance conventional methods in predicting clinical outcomes. Setting: A regional cancer centre in Australia. Participants: Disease-specific data from a purpose-built cancer registry (Evaluation of Cancer Outcomes (ECO)) from 869 patients were used to predict survival at 6, 12 and 24 months. The model was validated with data from a further 94 patients, and results compared to the assessment of five specialist oncologists. Machine-learning prediction using ECO data was compared with that using EAR and a model combining ECO and EAR data. Primary and secondary outcome measures: Survival prediction accuracy in terms of the area under the receiver operating characteristic curve (AUC). Results: The ECO model yielded AUCs of 0.87 (95% CI 0.848 to 0.890) at 6 months, 0.796 (95% CI 0.774 to 0.823) at 12 months and 0.764 (95% CI 0.737 to 0.789) at 24 months. Each was slightly better than the performance of the clinician panel. The model performed consistently across a range of cancers, including rare cancers. Combining ECO and EAR data yielded better prediction than the ECO-based model (AUCs ranging from 0.757 to 0.997 for 6 months, AUCs from 0.689 to 0.988 for 12 months and AUCs from 0.713 to 0.973 for 24 months). The best prediction was for genitourinary, head and neck, lung, skin, and upper gastrointestinal tumours. Conclusions: Machine learning applied to information from a disease-specific (cancer) database and the EAR can be used to predict clinical outcomes. Importantly, the approach described made use of digital data that is already routinely collected but underexploited by clinical health systems.
Related items
Showing items related by title, author, creator and subject.
-
Ting, Huey Tze (2013)Not until recently did we see an enormous surge of interest in the study of machining of advanced ceramics. This has resulted in significant advances lately in their development and usage. Machinable glass ceramics, ...
-
Campbell, Tristan ; Dixon, Kingsley ; Dods, K.; Fearns, Peter ; Handcock, Rebecca (2020)© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Honey yield from apiary sites varies significantly between years. This affects the beekeeper’s ability to manage hive health, as well as honey production. This ...
-
Zhou, Huaqiong ; Albrecht, Matthew ; Roberts, Pamela A.; Porter, Paul; Della, Philip (2021)Objectives: To assess whether adding clinical information and written discharge documentation variables improves prediction of paediatric 30-day same-hospital unplanned readmission compared with predictions based on ...