Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment

    Access Status
    Fulltext not available
    Authors
    Bansal, R.
    Dhami, N.
    Mukherjee, Abhijit
    Reddy, M.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bansal, R. and Dhami, N. and Mukherjee, A. and Reddy, M. 2016. Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment. Journal of Industrial Microbiology and Biotechnology. [In Press].
    Source Title
    Journal of Industrial Microbiology and Biotechnology
    DOI
    10.1007/s10295-016-1835-6
    ISSN
    1367-5435
    School
    Office of Research and Development
    URI
    http://hdl.handle.net/20.500.11937/24950
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 Society for Industrial Microbiology and Biotechnology. Microbial carbonate precipitation has emerged as a promising technology for remediation and restoration of concrete structures. Deterioration of reinforced concrete structures in marine environments is a major concern due to chloride-induced corrosion. In the current study, halophilic bacteria Exiguobacterium mexicanum was isolated from sea water and tested for biomineralization potential under different salt stress conditions. The growth, urease and carbonic anhydrase production significantly increased under salt stress conditions. Maximum calcium carbonate precipitation was recorded at 5 % NaCl concentration. Application of E. mexicanum on concrete specimens significantly increased the compressive strength (23.5 %) and reduced water absorption about five times under 5 % salt stress conditions compared to control specimens. SEM and XRD analysis of bacterial-treated concrete specimens confirmed the precipitation of calcite. The present study results support the potential of this technology for improving the strength and durability properties of building structures in marine environments.

    Related items

    Showing items related by title, author, creator and subject.

    • Shear and bond behaviour of reinforced fly ash-based geopolymer concrete beams
      Chang, Ee Hui (2009)
      Concrete is by far the most widely used construction material worldwide in terms of volume, and so has a huge impact on the environment, with consequences for sustainable development. Portland cement is one of the most ...
    • Bond Strengths of Geopolymer and Cement Concretes
      Sarker, Prabir (2010)
      Geopolymer is an inorganic alumino-silicate product that shows good bonding properties. Geopolymer binders are used together with aggregates to produce geopolymer concrete which is an ideal building material for ...
    • Low-Calcium fly ash-based geopolymer concrete: Reinforced beams and columns
      Sumajouw, Marthin; Rangan, B. Vijaya (2006)
      From 2001, we have conducted some important research on the development, manufacture, behaviour, and applications of Low-Calcium Fly Ash-Based Geopolymer Concrete. This concrete uses no Portland cement; instead,we use the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.