Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Experimental study of the replacement of calcite by calcium sulphates

    Access Status
    Fulltext not available
    Authors
    Ruiz-Agudo, E.
    Putnis, Christine
    Hövelmann, J.
    Álvarez-Lloret, P.
    Ibáñez-Velasco, A.
    Putnis, Andrew
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ruiz-Agudo, E. and Putnis, C. and Hövelmann, J. and Álvarez-Lloret, P. and Ibáñez-Velasco, A. and Putnis, A. 2015. Experimental study of the replacement of calcite by calcium sulphates. Geochimica et Cosmochimica Acta. 156: pp. 75-93.
    Source Title
    Geochimica et Cosmochimica Acta
    DOI
    10.1016/j.gca.2015.02.012
    ISSN
    0016-7037
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/24959
    Collection
    • Curtin Research Publications
    Abstract

    Among the most relevant mineral replacement reactions are those involving sulphates and carbonates, which have important geological and technological implications. Here it is shown experimentally that during the interaction of calcite (CaCO3) cleavage surfaces with sulphate-bearing acidic solutions, calcite is ultimately replaced by gypsum (CaSO4 2H2O) and anhydrite (CaSO4), depending on the reaction temperature. Observations suggest that this occurs most likely via an interface-coupled dissolution-precipitation reaction, in which the substrate is replaced pseudomorphically by the product. At 120 and 200°C gypsum and/or bassanite (CaSO4·0.5H2O) form as precursor phases for the thermodynamically stable anhydrite. Salinity promotes the formation of less hydrated precursor phases during the replacement of calcite by anhydrite. The reaction stops before equilibrium with respect to calcite is reached and during the course of the reaction most of the bulk solutions are undersaturated with respect to the precipitating phase(s). A mechanism consisting of the dissolution of small amounts of solid in a thin layer of fluid at the mineral-fluid interface and the subsequent precipitation of the product phase from this layer is in agreement with these observations. PHREEQC simulations performed in the framework of this mechanism highlight the relevance of transport and surface reaction kinetics on the volume change associated with the CaCO3-CaSO4 replacement. Under our experimental conditions, this reaction occurs with a positive volume change, which ultimately results in passivation of the unreacted substrate before calcite attains equilibrium with respect to the bulk solution.

    Related items

    Showing items related by title, author, creator and subject.

    • Reaction mechanism for the replacement of calcite by dolomite and siderite: Implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralisation
      Pearce, M.; Timms, Nicholas Eric; Hough, R.; Cleverley, J. (2013)
      Carbonate reactions are common in mineral deposits due to CO2-rich mineralising fluids. This study presents the first in-depth, integrated analysis of microstructure and microchemistry of fluid-mediated carbonate reaction ...
    • Hydrothermal replacement of aragonite by calcite: Interplay between replacement, fracturing and growth
      Perdikouri, C.; Piazolo, S.; Kasioptas, A.; Schmidt, B.; Putnis, Andrew (2013)
      The hydrothermal transformation of single aragonite crystals into polycrystalline calcite has been studied under hydrothermal conditions. The transformation involves a fluid-mediated replacement reaction, associated with ...
    • The role of reacting solution and temperature on compositional evolution during harzburgite alteration: Constraints from the Mesoarchean Nuasahi Massif (eastern India)
      Majumdar, A.; Hövelmann, J.; Mondal, S.; Putnis, Andrew (2016)
      We investigate the microtextural–chemical features of partially serpentinized harzburgites from the lower ultramafic unit of the Mesoarchean Nuasahi Massif, eastern India, in order to understand the role of reacting fluid ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.