Show simple item record

dc.contributor.authorZhou, Guanglu
dc.contributor.authorQi, L.
dc.contributor.authorWu, S.
dc.date.accessioned2017-01-30T12:46:22Z
dc.date.available2017-01-30T12:46:22Z
dc.date.created2013-11-11T20:00:31Z
dc.date.issued2013
dc.identifier.citationZhou, Guanglu and Qi, Liqun and Wu, Soon-Yi. 2013. On the largest eigenvalue of a symmetric nonnegative tensor. Numerical Linear Algebra with Applications. 20 (6): pp. 913-918.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/25034
dc.identifier.doi10.1002/nla.1885
dc.description.abstract

In this paper, some important spectral characterizations of symmetric nonnegative tensors are analyzed. In particular, it is shown that a symmetric nonnegative tensor has the following properties: (i) its spectral radius is zero if and only if it is a zero tensor; (ii) it is weakly irreducible (respectively, irreducible) if and only if it has a unique positive (respectively, nonnegative) eigenvalue–eigenvector; (iii) the minimax theorem is satisfied without requiring the weak irreducibility condition; and (iv) if it is weakly reducible, then it can be decomposed into some weakly irreducible tensors. In addition, the problem of finding the largest eigenvalue of a symmetric nonnegative tensor is shown to be equivalent to finding the global solution of a convex optimization problem. Subsequently, algorithmic aspects for computing the largest eigenvalue of symmetric nonnegative tensors are discussed.

dc.publisherJohn Wiley & Sons Ltd
dc.subjecteigenvalue
dc.subjectconvex optimization
dc.subjectconvergence
dc.subjectalgorithm
dc.subjectsymmetric tensor
dc.titleOn the largest eigenvalue of a symmetric nonnegative tensor
dc.typeJournal Article
dcterms.source.volume2013
dcterms.source.startPagenla 1885
dcterms.source.endPagenla 1885
dcterms.source.issn1099-1506
dcterms.source.titleNumerical Linear Algebra with Applications
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record