Characterization of Skeletonema costatum intracellular organic matter and study of nanomechanical properties under different solution conditions
dc.contributor.author | Gutierrez Garces, Leonardo | |
dc.contributor.author | Aubry, C. | |
dc.contributor.author | Dramas, L. | |
dc.contributor.author | Aimar, P. | |
dc.contributor.author | Croue, J. | |
dc.date.accessioned | 2017-01-30T12:46:47Z | |
dc.date.available | 2017-01-30T12:46:47Z | |
dc.date.created | 2016-07-07T19:30:16Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Gutierrez Garces, L. and Aubry, C. and Dramas, L. and Aimar, P. and Croue, J. 2016. Characterization of Skeletonema costatum intracellular organic matter and study of nanomechanical properties under different solution conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 506: pp. 154-161. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/25111 | |
dc.identifier.doi | 10.1016/j.colsurfa.2016.06.025 | |
dc.description.abstract |
In the current investigation, a rigorous characterization of the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) intracellular organic matter (IOM), including nanomechanical properties, was conducted. HMW SKC-IOM was characterized as a mixture of polysaccharides, proteins, and lipids. Atomic force microscopy (AFM) provided crucial information of this isolate at a nanoscale resolution. HMW SKC-IOM showed highly responsive to solution chemistry: fully extended chains at low ionic strength, and compressing structures with increasing electrolyte concentration in solution. Interestingly, two regions of different nanomechanical properties were observed: (a) Region #1: located farther from the substrate and showing extended polymeric chains, and (b) Region #2: located <10 nm above the substrate and presenting compressed structures. The polymer length, polymer grafting density, and compressibility of these two regions were highly influenced by solution conditions. Results suggest that steric interactions originating from HMW SKC-IOM polymeric structure would be a dominant interacting mechanism with surfaces. The current investigation has successfully applied models of polymer physics to describe the complex HMW SKC-IOM structural conformation at different solution conditions. The detailed methodology presented provides a tool to characterize and understand biopolymers interactions with surfaces, including filtration membranes, and can be extended to other environmentally relevant organic compounds. | |
dc.publisher | Elsevier BV | |
dc.title | Characterization of Skeletonema costatum intracellular organic matter and study of nanomechanical properties under different solution conditions | |
dc.type | Journal Article | |
dcterms.source.volume | 506 | |
dcterms.source.number | In Progress | |
dcterms.source.startPage | 154 | |
dcterms.source.endPage | 161 | |
dcterms.source.issn | 0927-7757 | |
dcterms.source.title | Colloids and Surfaces A: Physicochemical and Engineering Aspects | |
curtin.department | Curtin Water Quality Research Centre | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |