Show simple item record

dc.contributor.authorShi, M.
dc.contributor.authorPrintsypar, G.
dc.contributor.authorDuong, P.
dc.contributor.authorCalo, Victor
dc.contributor.authorIliev, O.
dc.contributor.authorNunes, S.
dc.date.accessioned2017-01-30T12:47:06Z
dc.date.available2017-01-30T12:47:06Z
dc.date.created2016-10-11T19:30:19Z
dc.date.issued2016
dc.identifier.citationShi, M. and Printsypar, G. and Duong, P. and Calo, V. and Iliev, O. and Nunes, S. 2016. 3D morphology design for forward osmosis. Journal of Membrane Science. 516: pp. 172-184.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/25162
dc.identifier.doi10.1016/j.memsci.2016.05.061
dc.description.abstract

We propose a multi-scale simulation approach to model forward osmosis (FO) processes using substrates with layered homogeneous morphology. This approach accounts not only for FO setup but also for detailed microstructure of the substrate using the digitally reconstructed morphology. We fabricate a highly porous block copolymer membrane, which has not been explored for FO heretofore, and use it as the substrate for interfacial polymerization. The substrate has three sub-layers, namely a top layer, a sponge-like middle layer, and a nonwoven fabric layer. We generate a digital microstructure for each layer, and verify them with experimental measurements. The permeability and effective diffusivity of each layer are computed based on their virtual microstructures and used for FO operation in cross-flow setups at the macro-scale. The proposed simulation approach predicts accurately the FO experimental data.

dc.publisherElsevier BV
dc.title3D morphology design for forward osmosis
dc.typeJournal Article
dcterms.source.volume516
dcterms.source.startPage172
dcterms.source.endPage184
dcterms.source.issn0376-7388
dcterms.source.titleJournal of Membrane Science
curtin.departmentDepartment of Applied Geology
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record