Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Phenological changes of oceanic phytoplankton in the 1980s and 2000s as revealed by remotely sensed ocean-color observations

    200328_96707_Phenological_changes_of_oceanic.pdf (2.279Mb)
    Access Status
    Open access
    Authors
    D’Ortenzio, F.
    Antoine, David
    Martinez, E.
    Ribera d’Alcalà, M.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    D’Ortenzio, F. and Antoine, D. and Martinez, E. and Ribera d’Alcalà, M. 2012. Phenological changes of oceanic phytoplankton in the 1980s and 2000s as revealed by remotely sensed ocean-color observations. Global Biogeochemical Cycles. 26 (4): GB4003.
    Source Title
    Global Biogeochemical Cycles
    DOI
    10.1029/2011GB004269
    ISSN
    0886-6236
    Remarks

    Copyright © 2012 American Geophysical Union. Reproduced with permission.

    URI
    http://hdl.handle.net/20.500.11937/25371
    Collection
    • Curtin Research Publications
    Abstract

    We investigated the phenology of oceanic phytoplankton at large scales over two 5-year time periods: 1979–1983 and 1998–2002. Two ocean-color satellite data archives (Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS)) were used to investigate changes in seasonal patterns of concentration-normalized chlorophyll. The geographic coverage was constrained by the CZCS data distribution. It was best for the Northern Hemisphere and also encompassed large areas of the Indian, South Pacific, and Equatorial Atlantic regions. For each 2° pixel, monthly climatologies were developed for satellite-derived chlorophyll, and the resulting seasonal cycles were statistically grouped using cluster analysis. Five distinct groups of mean seasonal cycles were identified for each half-decade period. Four types were common to both time periods and correspond to previously identified phytoplankton regimes: Bloom, Tropical, Subtropical North, and Subtropical South. Two other mean seasonal cycles, one in each of the two compared 5-year periods, were related to transitional or intermediate states (Transitional Tropical and Transitional Bloom). Five mean seasonal cycles (Bloom, Tropical, Subtropical North, and Subtropical South, Transitional Bloom) were further confirmed when the whole SeaWiFS data set (1998–2010) was analyzed. For ~35% of the pixels analyzed, characteristic seasonal cycles of the 1979–1983 years differed little from those of the 1998–2002 period. For ~65% of the pixels, however, phytoplankton seasonality patterns changed markedly, especially in the Northern Hemisphere. Subtropical regions of the North Pacific and Atlantic experienced a widespread expansion of the Transitional Bloom regime, which appeared further enhanced in the climatology based on the full SeaWiFS record (1998–2010), and, as showed by a more detailed analysis, is associated to La Niña years. This spatial pattern of Transitional Bloom regime reflects a general smoothing of seasonality at macroscale, coming into an apparent greater temporal synchrony of the Northern Hemisphere. The Transitional Bloom regime is also the result of a higher variability, both in space and time. The observed change in phytoplankton dynamics may be related not only to biological interactions but also to large-scale changes in the coupled atmosphere–ocean system. Some connections are indeed found with climate indices. Changes were observed among years belonging to opposite phases of ENSO, though discernible from the change among the two periods and within the SeaWiFS era (1998–2010). These linkages are considered preliminary at present and are worthy of further investigation.

    Related items

    Showing items related by title, author, creator and subject.

    • Changes in phytoplankton groups composition in the Equatorial Pacific during ENSO cycles
      Masotti, I.; Moulin, C.; Alvain, S.; Bopp, L.; Tagliabue, A.; Antoine, David (2010)
      The El Niño Southern Oscillation (ENSO) drives important changes in marine productivity of the Equatorial Pacific, in particular during major El Niño/La Niña transitions. Changes in environmental conditions associated ...
    • Phytoplankton ecology in the upper Swan River estuary, Western Australia: with special reference to nitrogen uptake and microheterotroph grazing
      Rosser, S.M. Jane Horner (2004)
      Phytoplankton succession and abundance in estuaries is known to be influenced by the relative strengths of various seasonally changing physical and chemical factors. Previous studies of Swan River Estuary phytoplankton ...
    • Variability in global ocean phytoplankton distribution over 1979-2007
      Masotti, I.; Alvain, S.; Moulin, C.; Antoine, David (2009)
      Recently, reanalysis of long-term ocean color data (CZCS and SeaWiFS; Antoine et al., 2005) has shown that world ocean average phytoplankton chlorophyll levels show an increase of 20% over the last two decades. It is ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.