In situ imaging of interfacial precipitation of phosphate on goethite
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Adsorption and subsequent immobilization of orthophosphate on iron oxides is of considerable importance in soil fertility and eutrophication studies. Here, in situ atomic force microscopy (AFM) has been used to probe the interaction of phosphate-bearing solutions with goethite, a-FeOOH, (010) cleavage surfaces. During the dissolution of goethite we observed simultaneous nucleation of nanoparticles (1.0-3.0 nm in height) of iron phosphate (Fe-P) phases at the earliest nucleation stages, subsequent aggregation to form secondary particles (about 6.0 nm in height) and layered precipitates under various pH values and ionic strengths relevant to acid soil solution conditions. The heterogeneous nucleation rates of Fe-P precipitates at phosphate concentrations ranging from 5.0 to 50.0 mM were quantitatively defined. Enhanced goethite dissolution in the presence of high concentration NaCl or AlCl<inf>3</inf> leads to a rapid increase in Fe-P nucleation rates, whereas low concentration MgCl<inf>2</inf> inhibits goethite dissolution, this in turn influences Fe-P nucleation. Moreover, kinetic data analyses show that low concentrations of citrate caused an increase in the nucleation rate of Fe-P phases. However, at higher concentrations of citrate, nucleation acceleration was reversed with much longer induction times to form Fe-P nuclei. These in situ observations may improve the mechanistic understanding of processes resulting in phosphate immobilization by goethite-rich acid soils in the presence of various inorganic and organic additive molecules.
Related items
Showing items related by title, author, creator and subject.
-
Wang, L.; Putnis, Christine; Hövelmann, J.; Putnis, Andrew (2018)© 2018 by the author. Licensee MDPI, Basel, Switzerland. Adsorption and subsequent precipitation of dissolved phosphates on iron oxides, such as hematite and goethite, is of considerable importance in predicting the ...
-
Wang, L.; Ruiz-Agudo, E.; Putnis, Christine; Menneken, M.; Putnis, Andrew (2012)Unraveling the kinetics of calcium orthophosphate (Ca-P) precipitation and dissolution is important for our understanding of the transformation and mobility of dissolved phosphate species in soils. Here we use an in situ ...
-
Wang, L.; Putnis, Christine; Ruiz-Agudo, E.; King, H.; Putnis, Andrew (2013)In situ atomic force microscopy (AFM) has been used to study the interaction of phosphate-bearing solutions with cerussite, PbCO3, (010) surfaces. During the dissolution of cerussite we observed simultaneous growth of ...