Voltage unbalance improvement in low voltage residential feeders with rooftop PVs using custom power devices
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Voltage unbalance is a major power quality problem in low voltage residential feeders due to the random location and rating of single-phase rooftop photovoltaic cells (PV). In this paper, two different improvement methods based on the application of series (DVR) and parallel (DSTATCOM) custom power devices are investigated to improve the voltage unbalance problem in these feeders. First, based on the load flow analysis carried out in MATLAB, the effectiveness of these two custom power devices is studied vis-à-vis the voltage unbalance reduction in urban and semi-urban/rural feeders containing rooftop PVs. Their effectiveness is studied from the installation location and rating points of view. Later, a Monte Carlo based stochastic analysis is carried out to investigate their efficacy for different uncertainties of load and PV rating and location in the network. After the numerical analyses, a converter topology and control algorithm is proposed for the DSTATCOM and DVR for balancing the network voltage at their point of common coupling. A state feedback control, based on pole-shift technique, is developed to regulate the voltage in the output of the DSTATCOM and DVR converters such that the voltage balancing is achieved in the network. The dynamic feasibility of voltage unbalance and profile improvement in LV feeders, by the proposed structure and control algorithm for the DSTATCOM and DVR, is verified through detailed PSCAD/EMTDC simulations.
Related items
Showing items related by title, author, creator and subject.
-
Juanuwattanakul, Parachai (2012)Voltage instabilities and subsequent system collapses are considered as growing concerns in modern multiphase distribution networks as they are progressively forced to operate closer to their stability limits due to many ...
-
Majumder, R.; Ghosh, Arindam; Ledwich, G.; zare, F. (2009)This paper proposes operation and control of converter based single phase distributed generators (DG) in a utility connected grid. A common utility practice is to distribute the household single-phase loads evenly between ...
-
Pezeshki, H.; Arefi, A.; Ledwich, G.; Wolfs, Peter (2017)Low-voltage (LV) feeder voltage magnitude and unbalance are often the constraining factors on a feeder's capacity to absorb rooftop photovoltaic (PV) generation. This paper presents a new probabilistic method for voltage ...