The influence of organic-film morphology on the efficient electron transfer at passivated polymer-modified electrodes to which nanoparticles are attached
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The impact of polymer-film morphology on the electron-transfer process at electrode/organic insulator/nanomaterial architectures is studied. The experimental data are discussed in the context of the most recent theory modelling the nanoparticle-mediated electron-transfer process at electrode/insulator/nanomaterial architectures proposed by Chazalviel and Allongue [J. Am. Chem. Soc. 2011, 133, 762-764]. A previous report [Anal. Chem. 2013, 85, 1073-1080] by us qualitatively verified the theory and demonstrates a transition from thickness-independent to thickness-dependent electron transfer as the layer thickness exceeds a certain threshold. This follow-up study explores a different polymer, poly(phenylenediamine), and focuses on the effect of the uniformity of organic film on electron transfer at these hybrid structures. Electron-transfer kinetics of modified surfaces, which were assessed using the redox species Ru(NH3)6 3+ in aqueous solution, showed that a thickness-dependent electron-transfer regime is achieved with poly(phenylenediamine). This is attributed to the sufficiently thin films never being fabricated with this polymer. Rather, it is suggested that thin poly(phenylenediamine) layers have a globular structure with poor film homogeneity and pinhole defects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related items
Showing items related by title, author, creator and subject.
-
Veder, Jean-Pierre M. (2010)This thesis reports on a methodology for the nanocharacterization of complex electrochemical systems. A series of powerful techniques have been adapted and applied to studies of two scientifically important electrochemical ...
-
Barfidokht, A.; Ciampi, S.; Luais, E.; Darwish, Nadim; Gooding, J. (2013)The phenomenon of nanoparticles attached to an electrode passivated by an organic layer allowing efficient electron transfer between redox species in solution and the underlying electrode to be restored has resulted in ...
-
Cuartero, M.; Acres, R.; De Marco, Roland; Bakker, E.; Crespo, G. (2016)© 2016 American Chemical Society.We report on the limiting conditions for ion-transfer voltammetry between an ion-exchanger doped and plasticized poly(vinyl chloride) (PVC) membrane and an electrolyte solution that was ...