The dynamics of evaporation from a liquid surface
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
We explore the collisional energy transfer dynamics of benzene molecules spontaneously evaporating from an in vacuo water -ethanol liquid beam. We find that rotations are cooled significantly more than the lowest-energy vibrational modes, while the rotational energy distributions are Boltzmann. Within experimental uncertainty, the rotational temperatures of vibrationally-excited evaporating molecules are the same as the ground state. Collision-induced gas phase energy transfer measurements reveal that benzene undergoes fast rotational relaxation, from which we deduce that the rotational temperature measured in the evaporation experiments (200-230 K) is an indication of the translational energy of the evaporate. Conversely, vibrational relaxation of the high frequency mode, m6, is very inefficient, suggesting that the m6 temperature (260-270 K) is an indication of the liquid surface temperature. Modelling of the relaxation dynamics by both 'temperature gap' and 'Master Equation' approaches indicates that the equivalent of 150-260 hard-sphere collisions occur during the transition from liquid to vacuum.
Related items
Showing items related by title, author, creator and subject.
-
Maselli, O.; Gascooke, J.; Lawrance, W.; Buntine, Mark (2009)We use the liquid microjet technique coupled with laser spectroscopy to measure the rotational and vibrational energy content of benzene spontaneously evaporating from a water-ethanol solution. We find different temperatures ...
-
Maselli, O.; Gascooke, J.; Kobelt, S.; Metha, G.; Buntine, Mark (2006)We have measured the rotational energy distribution of benzene molecules both evaporated and desorbed by an IR laser from a liquid microjet. Analysis of the 6(0)(1) vibronic band of benzene has shown that the benzene ...
-
Yu, Yun (2009)Energy production from fossil fuels results in significant carbon dioxide emission, which is a key contributor to global warming and the problems related to climate change. Biomass is recognized as an important part of ...