Show simple item record

dc.contributor.authorVanorio, T.
dc.contributor.authorMavko, G.
dc.contributor.authorVialle, Stephanie
dc.contributor.authorSpratt, K.
dc.identifier.citationVanorio, T. and Mavko, G. and Vialle, S. and Spratt, K. 2010. The rock physics basis for 4D seismic monitoring of CO2 fate: Are we there yet?. The Leading Edge. 29 (2): pp. 156-162.

Monitoring, verification, and accounting (MVA) of CO2 fate which are the three fundamental needs in geological sequestration are discussed. The primary objective of MVA protocols is to identify and quantify the injected CO2 stream within the injection/storage horizon and any leakage of sequestered gas from the injection horizon, providing public assurance. Changes in the elastic properties of the reservoir induced by the injection of CO2 can be various, affecting the properties of the fluid, those of the rock frame, or both. Seismic reservoir monitoring has traditionally treated the changes in the reservoir rock as a physical-mechanical problem, that is changes in seismic signatures are mostly modeled as functions of saturation and stress variations and/or intrinsic rock properties. To enhance the effectiveness of time-lapse seismic studies, CO2-optimized physical-chemical models involving frame substitution schemes must be developed to account for the type and magnitude of reductions caused by rock-fluid interactions at the grain/pore scale.

dc.publisherSociety of Exploration Geophysicists
dc.titleThe rock physics basis for 4D seismic monitoring of CO2 fate: Are we there yet?
dc.typeJournal Article
dcterms.source.titleThe Leading Edge
curtin.departmentDepartment of Exploration Geophysics
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record