Show simple item record

dc.contributor.authorDokuchaev, Nikolai
dc.date.accessioned2017-01-30T12:51:07Z
dc.date.available2017-01-30T12:51:07Z
dc.date.created2011-10-17T20:01:18Z
dc.date.issued2005
dc.identifier.citationDokuchaev, Nikolai. 2005. Optimal solution of investment problems via linear parabolic equations generated by Kalman filter. SIAM Journal on Optimization. 44 (4): pp. 1239-1258.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/25971
dc.description.abstract

We consider optimal investment problems for a diffusion market model with non-observable random drifts that evolve as an Ito's process. Admissible strategies do not use direct observations of the market parameters, but rather use historical stock prices. For a non-linear problem with a general performance criterion, the optimal portfolio strategy is expressed via the solution of a scalar minimization problem and a linear parabolic equation with coefficients generated by the Kalman filter.

dc.publisherSIAM Publications
dc.subjectnon-observable parameters
dc.subjectKalman filter
dc.subjectOptimal portfolio
dc.titleOptimal solution of investment problems via linear parabolic equations generated by Kalman filter
dc.typeJournal Article
dcterms.source.volume44
dcterms.source.number4
dcterms.source.startPage1239
dcterms.source.endPage1258
dcterms.source.issn10526234
dcterms.source.titleSIAM Journal on Optimization
curtin.note

Copyright © 2005 Society for Industrial and Applied Mathematics (SIAM)

curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record