Optimal discrete-valued control computation
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
The final publication is available at Springer via http://doi.org/10.1007/s10898-012-9858-7
NOTICE: This is the author’s version of a work in which changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.
Collection
Abstract
In this paper, we consider an optimal control problem in which the control takes values from a discrete set and the state and control are subject to continuous inequality constraints. By introducing auxiliary controls and applying a time-scaling transformation, we transform this optimal control problem into an equivalent problem subject to additional linear and quadratic constraints. The feasible region defined by these additional constraints is disconnected, and thus standard optimization methods struggle to handle these constraints. We introduce a novel exact penalty function to penalize constraint violations, and then append this penalty function to the objective. This leads to an approximate optimal control problem that can be solved using standard software packages such as MISER. Convergence results show that when the penalty parameter is sufficiently large, any local solution of the approximate problem is also a local solution of the original problem. We conclude the paper with some numerical results for two difficult train control problems.
Related items
Showing items related by title, author, creator and subject.
-
Li, Bin (2011)In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...
-
Yu, Changjun (2012)In this thesis, We propose new computational algorithms and methods for solving four classes of constrained optimization and optimal control problems. In Chapter 1, we present a brief review on optimization and ...
-
Loxton, Ryan Christopher (2010)In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...