Numerical simulation of a cable-stayed bridge response to blast loads, Part II: Damage prediction and FRP strengthening
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
This study investigates the blast loading effects on a large cable-stayed bridge. The results are presented in two parts. A companion paper by Tang and Hao (2010) [2] presents the numerical model of the bridge structure and simulation results of the four main bridge components (pier, tower, back span deck and main span deck) to blast load from a 1000 kg TNT explosion at a standoff distance of 0.5 m and 1.0 m, respectively. This paper presents numerical simulation results of the four bridge components to blast loads of different scaled distances, and performs progressive collapse analyses of the bridge structure after damage in either one of the four main bridge components has occurred. The most vulnerable bridge component is identified. The safe scaled distance for bridge protection is determined. The effectiveness of FRP strengthening of concrete back span for blast load resistance is also investigated. It is found that the failure of vertical load-carrying components will lead to catastrophic bridge collapse while above deck explosion may cause severe instability of the bridge. It is also found that the minimum scaled distances for tower and pier for preventing catastrophic bridge collapse are approximately 1.20m/kg1/3 and 1.33m/kg1/3, respectively. Numerical results presented in this study will help owners and engineers of similar bridges to determine appropriate measures for bridge protection against possible explosion loads.
Related items
Showing items related by title, author, creator and subject.
-
Tang, E.; Hao, Hong (2010)Many researchers have conducted comprehensive experimental and numerical investigations to examine civilian structures' response to explosive loads. Most of the studies reported in the literature deal with building ...
-
Hao, Yifei; Hao, Hong; Shi, Y.; Wang, Z.; Zong, R. (2017)To protect structures from external explosions, solid protective barriers have been demonstrated by experimental and numerical studies to be able to effectively mitigate blast loads on structures behind them. However, to ...
-
Hao, Hong; Stewart, M.; Li, Z.; Shi, Y. (2010)Structural reliability analyses are commonly applied to estimation of probabilities of structural damage to static and dynamic loads such as earthquake, wind and wave loads. Although blast loadings acting on structures ...