Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media

    Access Status
    Fulltext not available
    Authors
    Caspari, Eva
    Gurevich, Boris
    Muller, T.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Caspari, E. and Gurevich, B. and Muller, T.M. 2013. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media. Physical Review E. 88 (4): pp. 042119-1 – 042129-10.
    Source Title
    Physical Review E
    DOI
    10.1103/PhysRevE.88.042119
    ISSN
    1539-3755
    URI
    http://hdl.handle.net/20.500.11937/26669
    Collection
    • Curtin Research Publications
    Abstract

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes.This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds.

    Related items

    Showing items related by title, author, creator and subject.

    • Biot's Slow Wave and Effective Hydraulic Conductivity in Random Media
      Caspari, Eva; Mϋller, Tobias; Rubino, G.; Gurevich, Boris (2013)
      We study Biot’s slow wave propagation in the presence of strong hydraulic conductivity fluctuations in the low-frequency range. The latter condition implies that the slow wave is a diffusion process. To elucidate the ...
    • Effective fluid transport properties of deformable rocks
      Müller, T.; Gurevich, Boris (2006)
      Modern reservoir monitoring technologies often make use of diffusion waves in order to estimate the hydraulic conductivity and diffusivity of reservoir rocks. However, most theoretical descriptions for these effective uid ...
    • Elastic wave attenuation, dispersion and anisotropy in fractured porous media
      Galvin, Robert (2007)
      Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.