Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Enhanced chromium tolerance of La0.6Sr0.4Co0.2Fe0.8O3 − δ electrode of solid oxide fuel cells by Gd0.1Ce0.9O1.95 impregnation

    Access Status
    Fulltext not available
    Authors
    Zhao, L.
    Amarasinghe, S.
    Jiang, San Ping
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhao, L. and Amarasinghe, S. and Jiang, S.P. 2013. Enhanced chromium tolerance of La0.6Sr0.4Co0.2Fe0.8O3 − δ electrode of solid oxide fuel cells by Gd0.1Ce0.9O1.95 impregnation. Electrochemistry Communications. 37: pp. 84-87.
    Source Title
    Electrochemistry Communications
    DOI
    10.1016/j.elecom.2013.10.019
    ISSN
    1388-2481
    School
    Fuels and Energy Technology Institute
    URI
    http://hdl.handle.net/20.500.11937/26729
    Collection
    • Curtin Research Publications
    Abstract

    The electrochemical activities and chromium tolerances are studied on single phase La0.6Sr0.4Co0.2Fe0.8O3 − δ (LSCF) and Gd0.1Ce0.9O1.95 (GDC) impregnated LSCF (GDC-LSCF) cathodes of solid oxide fuel cells (SOFCs). GDC-LSCF electrode shows a significantly reduced electrode polarization resistance and more stable performance for the O2 reduction reaction in the presence of chromia-forming metallic interconnect as compared to that on LSCF. The results indicate that the impregnated GDC nanoparticles serve as a barrier layer to enhance the resistance and tolerance of LSCF towards chromium deposition and poisoning.

    Related items

    Showing items related by title, author, creator and subject.

    • Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes under solid oxide fuel cells operation conditions
      Liu, Y.; Chen, Kongfa; Zhao, Ling; Chi, B.; Pu, J.; Jiang, San Ping (2014)
      The performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3d (LSCF)cathodes and LSCF impregnated Gd0.1Ce0.9O2d (LSCF-GDC) cathodes are investigated undersolid oxide fuel cell operation conditions. LSCF ...
    • Highly sulfur poisoning-tolerant BaCeO3-impregnated La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for solid oxide fuel cells
      Wang, C.; Luo, D.; Jiang, San Ping; Lin, B. (2018)
      © 2018 IOP Publishing Ltd. Electrochemical performance and sulfur (SO2) tolerance were studied on pristine La0.6Sr0.4Co0.2Fe0.8O3-d(LSCF) and BaCeO3-impregnated LSCF (BaCeO3-LSCF) composite cathodes of solid oxide fuel ...
    • Effect of boron deposition and poisoning on the surface exchange properties of LSCF electrode materials of solid oxide fuel cells
      Zhao, L.; Hyodo, J.; Chen, Kongfa; Ai, Na; Amarasinghe, S.; Ishihara, T.; Jiang, San Ping (2013)
      The relationship between the surface segregation, boron poisoning and surface exchange coefficients of La0.6Sr0.4Co0.2Fe0.8O3−δ, (LSCF) cathodes of solid oxide fuel cells (SOFCs) is studied on dense bar samples using SEM, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.