Effect of wear on stress distributions and potential fracture in teeth
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Finite element analysis is conducted on a tooth model with different degrees of wear. The model is taken as a hemispherical shell (enamel) on a compliant interior (dentin). Occlusal loading is simulated by contact with a flat or curved, hard or soft, indenter. Stress redistributions indicate that development of a wear facet may enhance some near-contact fracture modes (cone-ring cracks, radial-median cracks, edge-chipping), but have little effect on far-field modes (margin cracks). Contacts on worn surfaces with small, hard food objects are likely to be most deleterious, generating local stress concentrations and thereby accelerating the wear process. More typical contacts with larger-scale soft foods are unlikely to have such adverse effects. Implications concerning dietary habits of animals is an adjunct consideration in this work.
Related items
Showing items related by title, author, creator and subject.
-
Laukkanen, A.; Holmberg, K.; Ronkainen, H.; Stachowiak, Gwidon; Podsiadlo, Pawel; Wolski, Marcin; Gee, M.; Gachot, C.; Li, L. (2017)© 2017 Elsevier B.V. The effects of surface roughness and topographical orientation on surface stresses influencing wear have been investigated for diamond like carbon (DLC) coated steel surfaces with three levels of ...
-
Rostamsowlat, I.; Akbari, B.; Evans, Brian (2018)It is generally accepted that drilling with drag bits (Polycrystalline Diamond Compact bits) simultaneously consists of “pure cutting” and “frictional contact” processes. To date, the mechanics of rock cutting have been ...
-
Madadi, Mahyar; Pervukhina, Marina; Gurevich, Boris (2013)We propose an analytical model for seismic anisotropy caused by the application of an anisotropic stress to an isotropic dry rock. We first consider an isotropic, linearly elastic medium (porous or non-porous) permeated ...