Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12-ball-milling time

    Access Status
    Fulltext not available
    Authors
    Wang, G.
    Xu, J.
    Wen, M.
    Cai, R.
    Ran, R.
    Shao, Zongping
    Date
    2008
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, G. and Xu, J. and Wen, M. and Cai, R. and Ran, R. and Shao, Z. 2008. Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12-ball-milling time. Solid State Ionics. 179 (21-26): pp. 946-950.
    Source Title
    Solid State Ionics
    DOI
    10.1016/j.ssi.2008.03.032
    ISSN
    0167-2738
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/26940
    Collection
    • Curtin Research Publications
    Abstract

    High-energy ball milling (HEBM) was applied for the synthesis of spinel Li4Ti5O12 and the influence of milling time was investigated systematically. With the increase of ball-milling time, the average particle size of the as-synthesized Li4Ti5O12 powder decreased from ~ 900 nm to ~ 150 nm, while the particle morphology changed little. At the same time, the main particle size distribution peak split up into two parts, which were narrowed and moved to a smaller range. Electrochemical testing results showed that the Li4Ti5O12 with precursor milled for 60 min at 500 rpm rotational speed showed a favorable discharge capacity of ~ 146.9 mAh/g with corresponding coulombic efficiency of 99.9% at 1 C rate. The rate performance was improved with the increase of milling time because of the smaller particle size of the resulted Li4Ti5O12. The voltage change between oxidation peak and reduction peak of Li4Ti5O12 also became wider with milling time increasing. © 2008 Elsevier B.V. All rights reserved.

    Related items

    Showing items related by title, author, creator and subject.

    • Formation and characteristics of glucose oligomers during the hydrolysis of cellulose in hot-compressed water
      Yu, Yun (2009)
      Energy production from fossil fuels results in significant carbon dioxide emission, which is a key contributor to global warming and the problems related to climate change. Biomass is recognized as an important part of ...
    • Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment
      Zhang, D.; Cai, R.; Zhou, Y.; Shao, Zongping; Liao, X.; Ma, Z. (2010)
      Effects of ball milling way and time on the phase formation, particulate morphology, carbon content, and consequent electrode performance of LiFePO4/C composite, prepared by high-energy ball milling of Li2CO3, NH4H2PO4, ...
    • A nanostructural investigation of mechanochemically synthesised hydrogen storage materials
      Paskevicius, Mark (2009)
      Aluminium, aluminium hydride (alane), and magnesium hydride nanoparticles have been mechanochemically synthesised in order to study their hydrogen sorption properties in contrast to the bulk. Nanoparticle formation was ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.