Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Optimal design of cascaded control scheme for PV system using BFO algorithm

    245937.pdf (558.3Kb)
    Access Status
    Open access
    Authors
    Kalaam, R.
    Hasanien, H.
    Al-Durra, A.
    Al-Wahedi, K.
    Muyeen, S.M.
    Date
    2016
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Kalaam, R. and Hasanien, H. and Al-Durra, A. and Al-Wahedi, K. and Muyeen, S.M. 2016. Optimal design of cascaded control scheme for PV system using BFO algorithm, in Proceedings of the 4th International Conference on Renewable Energy Research and Applications (ICRERA) conference, Nov 22-25 2015, pp. 907-912. Palermo, Italy: IEEE.
    Source Title
    2015 International Conference on Renewable Energy Research and Applications, ICRERA 2015
    DOI
    10.1109/ICRERA.2015.7418541
    ISBN
    9781479999828
    School
    Department of Electrical and Computer Engineering
    Remarks

    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    URI
    http://hdl.handle.net/20.500.11937/26979
    Collection
    • Curtin Research Publications
    Abstract

    In this paper presents Bacteria Foraging Optimization (BFO) algorithm based approach to find the optimum design values for the Proportional-Integral (PI) Controllers in cascaded structure is presented. Tuning the values of four PI controllers is very complex when the system is difficult to express in terms of mathematical model due to system nonlinearity. Response surface methodology (RSM) is used to formulate a mathematical design which is required to apply optimization algorithm. To examine the performance of BFO algorithm in obtaining optimum values of multiple PI controllers, a grid connected Photovoltaic (PV) system is chosen. Transient performance of the PI controller with optimum design values is evaluated under grid fault conditions. The system is simulated using PSCAD/EMTDC. Simulation results have shown the validity of the optimal design values obtained from RSM-BFO approach under different disturbances and system parameter variations.

    Related items

    Showing items related by title, author, creator and subject.

    • Global algorithms for nonlinear discrete optimization and discrete-valued optimal control problems
      Woon, Siew Fang (2009)
      Optimal control problems arise in many applications, such as in economics, finance, process engineering, and robotics. Some optimal control problems involve a control which takes values from a discrete set. These problems ...
    • Optimal control problems involving constrained, switched, and delay systems
      Loxton, Ryan Christopher (2010)
      In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
    • Computational methods for solving optimal industrial process control problems
      Chai, Qinqin (2013)
      In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.