On the use of the Watson mixture model for clustering-based under-determined blind source separation
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In this paper, we investigate the application of a generative clustering technique for the estimation of time-frequency source separation masks. Recent advances in time-frequency clustering-based approaches to blind source separation have touched upon the Watson mixture model (WMM) as a tool for source separation. However, most methods have been frequency bin-wise and have thus required the additional permutation alignment stage, and previous full-band methods which employ the WMM have yet to be applied to the under-determined setting. We propose to evaluate the clustering ability of the WMM within the clustering-based source separation framework. Evaluations confirm the superiority of the WMM against other previously used clustering techniques such as the fuzzy c-means.
Related items
Showing items related by title, author, creator and subject.
-
Shulevski, A.; Morganti, R.; Barthel, P.; Murgia, M.; Van Weeren, R.; White, G.; Brüggen, M.; Kunert-Bajraszewska, M.; Jamrozy, M.; Best, P.; Röttgering, H.; Chyzy, K.; De Gasperin, F.; Bîrzan, L.; Brunetti, G.; Brienza, M.; Rafferty, D.; Anderson, J.; Beck, R.; Deller, A.; Zarka, P.; Schwarz, D.; Mahony, E.; Orru, E.; Bell, M.; Bentum, M.; Bernardi, G.; Bonafede, A.; Breitling, F.; Broderick, J.; Butcher, H.; Carbone, D.; Ciardi, B.; De Geus, E.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M.; Grießmeier, J.; Gunst, A.; Heald, G.; Hoeft, M.; Hörandel, J.; Horneffer, A.; Van Der Horst, A.; Intema, Hubertus; Juette, E.; Karastergiou, A.; Kondratiev, V.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J.; Meulman, H.; Mulcahy, D.; Munk, H.; Norden, M.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A.; Reich, W.; Rowlinson, A.; Scaife, A.; Serylak, M.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, M. (2015)Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex ...
-
Atcheson, M.; Jafari, I.; Togneri, R.; Nordholm, Sven (2014)In this paper we propose to incorporate contextual time frequency information for clustering-based blind source separation. Previous clustering-based approaches have successfully used clustering techniques to estimate ...
-
Jafari, I.; Atcheson, M.; Togneri, R.; Nordholm, Sven (2014)In this paper we investigate the use of observation weights and contextual time-frequency information for clustering-based blind source separation. Previous clustering-based approaches have successfully used clustering ...