Linear quadratic regulation for discrete-time antilinear systems: An anti-Riccati matrix equation approach
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2015 The Franklin Institute. In this paper, the linear quadratic regulation problem is investigated for discrete-time antilinear systems. Two cases are considered: finite time state regulation and infinite time state regulation. First, the discrete minimum principle is generalized to the complex domain. By using the discrete minimum principle and dynamic programming, necessary and sufficient conditions for the existence of the unique optimal control are obtained for the finite time regulation problem in terms of the so-called anti-Riccati matrix equation. Besides, the optimal value of the performance index under the optimal control is provided. Furthermore, the optimal regulation problem on an infinite interval is investigated under the assumption that the considered time-invariant antilinear system is controllable. The resulted closed-loop system under the optimal control turns out to be asymptotically stable.
Related items
Showing items related by title, author, creator and subject.
-
Loxton, Ryan Christopher (2010)In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
-
Woon, Siew Fang (2009)Optimal control problems arise in many applications, such as in economics, finance, process engineering, and robotics. Some optimal control problems involve a control which takes values from a discrete set. These problems ...
-
Li, Bin (2011)In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...