A lyapunov theory-based neural network approach for face recognition
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
This chapter presents a new face recognition system comprising of feature extraction and the Lyapunov theory-based neural network. It first gives the definition of face recognition which can be broadly divided into (i) feature-based approaches, and (ii) holistic approaches. A general review of both approaches will be given in the chapter. Face features extraction techniques including Principal Component Analysis (PCA) and Fisher's Linear Discriminant (FLD) are discussed. Multilayered neural network (MLNN) and Radial Basis Function neural network (RBF NN) will be reviewed. Two Lyapunov theory-based neural classifiers: (i) Lyapunov theory-based RBF NN, and (ii) Lyapunov theory-based MLNN classifiers are designed based on the Lyapunov stability theory. The design details will be discussed in the chapter. Experiments are performed on two benchmark databases, ORL and Yale. Comparisons with some of the existing conventional techniques are given. Simulation results have shown good performance for face recognition using the Lyapunov theory-based neural network systems. © 2010, IGI Global.
Related items
Showing items related by title, author, creator and subject.
-
Lim, Hann; Seng, K.; Ang, L.; Chin, S. (2009)This brief presents a Lyapunov theory-based weight adaptation scheme for a multilayered neural network (MLNN) mainly used to classify a multiple-input-multiple-output (MIMO) problem. Initially, the MLNN system is linearized ...
-
Lim, King Hann; Seng, Kah Phooi; Ang, Li-Minn (2012)Lyapunov theory-based radial basis function neural network (RBFNN) is developed for traffic sign recognition in this paper to perform multiple inputs multiple outputs (MIMO) classification. Multidimensional input is ...
-
Lim, Hann; Seng, K.; Ang, L. (2010)This paper presents a novel traffic sign recognition system comprising of: (i) Color/shape classification, (ii) Pictogram extraction, (iii) Features selection and, (iv) Lyapunov Theory-based Radial Basis Function neural ...