Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
The final publication is available at Springer via http://doi.org/10.1007/s11434-015-0911-z
Collection
Abstract
© 2015, Science China Press and Springer-Verlag Berlin Heidelberg. Care should be taken to minimize adverse impact of receiver differential code biases (DCBs) on global navigation satellite system (GNSS)-derived ionospheric parameters. It is therefore of importance to ascertain the intrinsic characteristics of receiver DCBs, preferably in the context of new-generation GNSS. In this contribution, we present a method that enables time-wise retrieval of between-receiver DCBs (BR-DCBs) from dual-frequency, code-only measurements collected by a pair of co-located receivers. This method is applicable to the US GPS as well as to a new set of GNSS constellations including the Chinese BeiDou, the European Galileo and the Japanese QZSS. With the use of this method, we determine the multi-GNSS BR-DCB time-wise estimates covering a time period of up to 2 years (January 2013–March 2015) with a 30-s time resolution for five receiver-pairs (four zero and one short baselines). For the BR-DCB time-wise estimates pertaining to an arbitrary receiver-pair and constellation, we demonstrate their promising intraday stability by means of statistical hypothesis testing. We also find that the BeiDou BR-DCB daily weighted average (DWA) estimates show a dependence on satellite type, in particular for receiver-pairs of mixed types. Finally, we demonstrate that long-term variability in BR-DCB DWA estimates can be closely associated with hardware temperature variations inside the receivers.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, B.; Teunissen, Peter (2015)When sensing the Earth’s ionosphere using multiple Global Navigation Satellite Systems (GNSSs) special care needs to be taken of the receiver Differential Code Bias (DCB) contributions to the error budget. For this reason ...
-
Zhang, B.; Teunissen, Peter (2016)When sensing Earth's ionosphere using multiple Global Navigation Satellite Systems (GNSSs), special care needs to be taken with the receiver differential code bias (DCB) contributions to the error budget. We propose a ...
-
Arora, B.; Morgan, John; Ord, S.; Tingay, Steven; Hurley-Walker, Natasha; Bell, M.; Bernardi, G.; Bhat, Ramesh; Briggs, F.; Callingham, J.; Deshpande, A.; Dwarakanath, K.; Ewall-Wice, A.; Feng, L.; For, B.; Hancock, Paul; Hazelton, B.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapinska, A.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, Randall; Wu, C.; Zheng, Q.; Bowman, J.; Cappallo, R.; Corey, B.; Emrich, David; Goeke, R.; Greenhill, L.; Kaplan, D.; Kasper, J.; Kratzenberg, E.; Lonsdale, C.; Lynch, Mervyn; McWhirter, S.; Morales, M.; Morgan, E.; Prabu, T.; Rogers, A.; Roshi, A.; Shankar, N.; Srivani, K.; Subrahmanyan, R.; Waterson, M.; Webster, R.; Whitney, A.; Williams, A.; Williams, A. (2015)Copyright © Astronomical Society of Australia 2015 We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a ...