Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area, Anhui Province, Eastern China

    Access Status
    Fulltext not available
    Authors
    Song, G.
    Qin, K.
    Li, G.
    Evans, Noreen
    Chen, A.L.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Song, G. and Qin, K. and Li, G. and Evans, N. and Chen, A.L. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area, Anhui Province, Eastern China. American Mineralogist. 99 (2-3): pp. 303-317.
    Source Title
    American Mineralogist
    DOI
    10.2138/am.2014.4431
    ISSN
    0003-004X
    School
    John de Laeter CoE in Mass Spectrometry
    URI
    http://hdl.handle.net/20.500.11937/27362
    Collection
    • Curtin Research Publications
    Abstract

    Scheelite is well developed in hydrothermal deposits, providing a window into genetic processes and facilitating comparative studies, however, few studies have focused on characterizing scheelite in skarn-type W-Mo deposits. The primary ore mineral in the Jitoushan and Baizhangyan skarn-type W-Mo deposits (Anhui Province, Eastern China), scheelite was analyzed for major, trace, and rare earth element (REE) abundance and for Sr-Nd isotopes. The analysis revealed two unique geochemical characteristics that distinguish the scheelite from skarn-type W-Mo deposits to that from vein-type Au-W and porphyry-type W-Mo deposits: higher Mo content with a negative correlation between MoO3 and WO3 and a strong HREE depletion. Skarn-type scheelite mainly inherited REE signatures from ore-forming fluids, and the early precipitation of skarn minerals (e.g., garnet, diopside, and amphibole) has most likely resulted in the observed strong HREE depletion in scheelite and the decoupling of LREEs and HREEs. Of the numerous substitution mechanisms suggested by previous workers, 3Ca2+ = 2REE3+ + □Ca (where □Ca is a Ca-site vacancy) is preferred for the substitution of REE3+ for Ca2+ and in this study, particularly given the low salinity of ore fluids.As the scheelite Eu anomalies were inherited from ore-forming fluids with variable redox conditions and pH, the complex dEu/Mo correlation indicates that Mo increasingly entered the scheelite under oxidizing conditions and reached a maxim at dEu values of 0.8 to 1. In contrast, under reducing conditions, Mo contents in scheelite decrease gradually and Mo is precipitated as molybdenite as a result of the change in dominant valence state. Unlike the Sr-Nd isotope compositions of scheelite from vein-type Au-(W) and W-(Sb-Au) deposits, the scheelite from skarn-type W-Mo deposits has low (143Nd/144Nd)(t) (most <0.5125) and intermediate (87Sr/86Sr)(t) values (most between 0.708 and 0.715). The eNd(t) values of the scheelite varied from –16 to –12.3 in the Baizhangyan deposit and from –9.5 to –9.1 in the Jitoushan deposit, indicating that the ore-forming materials in the two W-Mo deposits were mainly derived from crustal sources.

    Related items

    Showing items related by title, author, creator and subject.

    • Mesozoic magmatism and metallogeny in the Chizhou area, Middle–Lower Yangtze Valley, SE China: Constrained by petrochemistry, geochemistry and geochronology
      Song, G.; Qin, K.; Li, G.; Evans, Noreen; Li, X. (2014)
      The Chizhou area, southeast China, hosts extensive W–Mo–Pb–Zn and Cu–Au deposits but remains relatively unstudied. A wide range of Mesozoic magmatic intrusives were analyzed (whole-rock geochemistry, Sr–Nd isotopes, zircon ...
    • Mineralogy and PTX relationships of the Archean Hannan South Au-Cu (Co-Bi) deposit, Kalgoorlie, Western Australia: Thermodynamic constraints on the formation of a zoned intrusion-related skarn
      Mueller, A.; Lawrance, L.; Muhling, Janet; Pooley, G. (2012)
      The Hannan South Au-Cu skarn deposit is located 12 km southeast of Kalgoorlie in the 2.7 Ga Eastern Goldfields Orogen of the Archean Yilgarn Craton, Western Australia. Two epidote-quartz-calcite-magnetite orebodies, ...
    • Investigation of the reasons for copper and gold loss in the cleaner tail, at Ok Tedi, Papua New Guinea
      Erepan, Peter (2004)
      Ok Tedi Mining Limited generates a copper and gold concentrate from its porphyry and skarn ore deposits located at Mt. Fublian, Western Province, PNG. The predominant porphyry ore-type is blended with high grade skarn ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.