The rapid formation of functional monolayers on silicon under mild conditions
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/3.0/
Collection
Abstract
We report on an exceedingly mild chemical functionalization of hydrogen-terminated Si(100) with unactivated and unprotected bifunctional α,ω-dialkynes. Monolayer formation occurs rapidly in the dark, and at room temperature, from dilute solutions of an aromatic-conjugated acetylene. The method addresses the poor reactivity of p-type substrates under mild conditions. We suggest the importance of several factors, including an optimal orientation for electron transfer between the adsorbate and the Si surface, conjugation of the acetylenic function with a π-system, as well as the choice of a solvent system that favors electron transfer and screens Coulombic interactions between surface holes and electrons. The passivated Si(100) electrode is amenable to further functionalization and shown to be a viable model system for redox studies at non-oxide semiconductor electrodes in aqueous solutions.
Related items
Showing items related by title, author, creator and subject.
-
Alchin, Mark David (2011)Australia’s rangelands encompass approximately 80% of the continent and generate significant wealth through a range of industries. The rangelands comprise four major ecosystem types, these are: grasslands, shrublands, ...
-
Chai, Qinqin (2013)In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
-
Brandl, S.; Emslie, M.; Ceccarelli, D.; Richards, Zoe (2016)As anthropogenic and natural disturbances intensify, there is mounting concern about the loss of functionally important or unique species. Functional redundancy, or the presence of several different species occupying ...