Show simple item record

dc.contributor.authorKashi, M.
dc.contributor.authorWu, Y.
dc.contributor.authorGonçales, V.
dc.contributor.authorChoudhury, M.
dc.contributor.authorCiampi, Simone
dc.contributor.authorGooding, J.
dc.identifier.citationKashi, M. and Wu, Y. and Gonçales, V. and Choudhury, M. and Ciampi, S. and Gooding, J. 2016. Silicon–SAM–AuNP electrodes: Electrochemical “switching” and stability. Electrochemistry Communications. 70: pp. 28-32.

The immobilization of gold nanoparticles (AuNPs) on functionalized electrodes has been shown to be an effective way for switching on the electrochemistry at an otherwise passivated surface. Herein, the attachment of AuNPs onto the industrially available p+- Si(100) electrodes was studied by means of cyclic voltammetry and X-ray photoelectron spectroscopy. The hydrosilylation of p+-Si(100) with 1,8-nonadiyne followed by the “click” of azido propylamine onto the alkyne end formed a self-assembled monolayer (SAM), which protected the p+-Si(100) against oxidation and prevented the electron transfer from dissolved Ru(NH3)63 +. Upon the attachment of AuNPs, however, electron transfer was initially restored. The performance of the p+–Si–SAM–AuNP electrode was found to decay with repeated voltammetric cycling due to the formation of SiOx underneath the SAM. These results suggest that p+–Si–SAM–AuNP electrodes can be used in electrochemical devices for single use applications but are not suitable for long-term use.

dc.publisherElsevier Inc.
dc.titleSilicon–SAM–AuNP electrodes: Electrochemical “switching” and stability
dc.typeJournal Article
dcterms.source.titleElectrochemistry Communications
curtin.departmentNanochemistry Research Institute
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record