Show simple item record

dc.contributor.authorWang, W.
dc.contributor.authorWang, F.
dc.contributor.authorRan, R.
dc.contributor.authorPark, H.
dc.contributor.authorJung, D.
dc.contributor.authorKwak, C.
dc.contributor.authorShao, Zongping
dc.date.accessioned2017-01-30T12:59:29Z
dc.date.available2017-01-30T12:59:29Z
dc.date.created2015-10-29T04:09:38Z
dc.date.issued2014
dc.date.submitted2015-10-29
dc.identifier.citationWang, W. and Wang, F. and Ran, R. and Park, H. and Jung, D. and Kwak, C. and Shao, Z. 2014. Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. Journal of Power Sources. 265: pp. 20-29.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/27522
dc.identifier.doi10.1016/j.jpowsour.2014.04.111
dc.description.abstract

In this study, pyridine was used to suppress the coke formation in solid oxide fuel cells (SOFCs) operating on liquid fuels. Pyridine can selectively occupy acidic sites of the Ni/Al2O3 catalyst layer and solves the problem of dehydration of ethanol in principle, resulting in a significant reduction in the coke formation rate for operating on ethanol fuel. At 600 °C, by adding 12.5 vol.% pyridine into the ethanol fuel, the coke formation rate over the Ni/Al2O3 catalyst is reduced by 64% while a cell power output comparable to that operating on hydrogen is still achieved based on total potential hydrogen available from ethanol. The effective reduction of carbon deposition on the catalyst layer thus protects the anode layer from carbon deposition by strongly suppressing coke formation, especially near the anode-electrolyte interface. Pyridine is adsorbed onto the acidic sites of the Ni/Al2O3 catalyst and the adsorbed pyridine may reduce the amount of carbonium ions formed, thereby reducing coke formation. This study suggested that the addition of pyridine could suppress the coke formation in SOFCs with Ni/Al2O3 catalyst layer operated on ethanol or some other similar liquid fuels.

dc.publisherElsevier
dc.titleCoking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive
dc.typeJournal Article
dcterms.dateSubmitted2015-10-29
dcterms.source.volume265
dcterms.source.startPage20
dcterms.source.endPage29
dcterms.source.issn0378-7753
dcterms.source.titleJournal of Power Sources
curtin.digitool.pid232305
curtin.pubStatusPublished
curtin.refereedTRUE
curtin.departmentDepartment of Chemical Engineering
curtin.identifier.scriptidPUB-VC-ORD-SA-05763
curtin.identifier.elementsidELEMENTS-82929
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record