New methods to constrain the radio transient rate: Results from a survey of four fields with LOFAR
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report on the results of a search for radio transients between 115 and 190 MHz with the LOw-Frequency ARray (LOFAR). Four fields have been monitored with cadences between 15 min and several months. A total of 151 images were obtained, giving a total survey area of 2275 deg2. We analysed our data using standard LOFAR tools and searched for radio transients using the LOFAR Transients Pipeline. No credible radio transient candidate has been detected; however, we are able to set upper limits on the surface density of radio transient sources at low radio frequencies. We also show that low-frequency radio surveys are more sensitive to steep-spectrum coherent transient sources than GHz radio surveys. We used two new statistical methods to determine the upper limits on the transient surface density. One is free of assumptions on the flux distribution of the sources, while the other assumes a power-law distribution in flux and sets more stringent constraints on the transient surface density. Both of these methods provide better constraints than the approach used in previous works. The best value for the upper limit we can set for the transient surface density, using the method assuming a power-law flux distribution, is 1.3 × 10-3 deg-2 for transients brighter than 0.3 Jy with a time-scale of 15 min, at a frequency of 150 MHz. We also calculated for the first time upper limits for the transient surface density for transients of different time-scales. We find that the results can differ by orders of magnitude from previously reported, simplified estimates.
Related items
Showing items related by title, author, creator and subject.
-
Koay, Jun Yi (2012)The scattering of radio waves and multipath propagation in the interstellar medium (ISM) of our Galaxy produces various observable phenomena such as the interstellar scintillation (ISS) and angular broadening of compact ...
-
Bell, M.; Fender, R.; Swinbank, J.; Miller-Jones, James; Law, C.; Scheers, B.; Spreeuw, H.; Wise, M.; Stappers, B.; Wijers, R.; Hessels, J.; Masters, J. (2011)In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - ...
-
Karastergiou, A.; Chennamangalam, J.; Armour, W.; Williams, C.; Mort, B.; Dulwich, F.; Salvini, S.; Magro, A.; Roberts, S.; Serylak, M.; Doo, A.; Bilous, A.; Breton, R.; Falcke, H.; Grießmeier, J.; Hessels, J.; Keane, E.; Kondratiev, V.; Kramer, M.; Van Leeuwen, J.; Noutsos, A.; Oslowski, S.; Sobey, Charlotte; Stappers, B.; Weltevrede, P. (2015)Fast radio bursts (FRBs) are millisecond radio signals that exhibit dispersion larger than what the Galactic electron density can account for. We have conducted a 1446 h survey for FRBs at 145 MHz, covering a total of ...