Interactions between organophosphonate-bearing solutions and (1014) calcite surfaces: An atomic force microscopy and first-principles molecular dynamics study
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The dissolution of (1014) calcite surfaces was investigated in the presence of 1-hydroxy ethylidene-1,1-diphosphonic acid) (HEDP) (0-10 mM) at pH=8 using in situ atomic force microscopy (AFM). The presence of the organophosphonate resulted in a change in the appearance of the dissolution features from the typical rhombohedral to elongated, tear shapes. Additionally, dissolution rates were drastically reduced, although they progressively increased with increasing additive concentration. Stabilization of polar steps and effects of HEDP on the structure and dynamics of the hydration shell of Ca2+ may explain such observations. First principles molecular dynamics simulations have been used to study such aspects. The results suggest that the presence of HEDP can increase the frequency of water exchange in the hydration shell of calcium and consequently affect its reactivity in solution. For [HEDP]>5 mM, we observed the nucleation and growth of Ca(CH3C(OH)- (PO3H) 2· 2H2O on calcite surfaces. The reaction between solid calcite and HEDP solutions seems to be controlled by the composition of a boundary layer at the carbonate-fluid interface. Dissolution of the carbonate causes this fluid boundary layer to become supersaturated with respect to the phosphonate phase, which then precipitates. The presence of this overgrowth reduces the calcite dissolution rate, thus representing a new treatment aimed at reducing solution-induced weathering of building stone via the formation of a protective nanofilm. © 2010 American Chemical Society.
Related items
Showing items related by title, author, creator and subject.
-
Vavouraki, A.; Putnis, Christine; Putnis, Andrew; Koutsoukos, P. (2010)Growth and dissolution of calcite {1014} surfaces in aqueous solutions in the presence of fluoride ions have been studied by in situ atomic force microscopy (AFM). Supersaturated and undersaturated solutions with respect ...
-
Stockmann, G.; Wolff-Boenisch, Domenik; Bovet, N.; Gislason, S.; Oelkers, E. (2014)The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25 °C from supersaturated aqueous solutions in the presence of ...
-
Ruiz-Agudo, E.; Kowacz, M.; Putnis, Christine; Putnis, Andrew (2010)The influence of background electrolytes on the mechanism and kinetics of calcite dissolution was investigated using in situ Atomic Force Microscopy (AFM). Experiments were carried out far from equilibrium by passing ...