Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Influence of surface chemistry on interfacial properties of low to high rank coal seams

    247752.pdf (1.091Mb)
    Access Status
    Open access
    Authors
    Arif, M.
    Jones, Franca
    Barifcani, Ahmed
    Iglauer, Stefan
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Arif, M. and Jones, F. and Barifcani, A. and Iglauer, S. 2017. Influence of surface chemistry on interfacial properties of low to high rank coal seams. Fuel. 194: pp. 211-221.
    Source Title
    Fuel
    DOI
    10.1016/j.fuel.2017.01.027
    ISSN
    0016-2361
    School
    School of Chemical and Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/27833
    Collection
    • Curtin Research Publications
    Abstract

    Wettability of CO2/water/coal systems is a fundamental petro-physical parameter, which governs the fluid flow and distribution in coal seams and thus directly affects CO2-storage and methane recovery from unmineable coal seams. The recognition of wettability of coal/CO2/brine systems help to de-risk CO2-storage and enhanced methane recovery projects in coal seams. To understand the factors influencing the wetting characteristics of coals, a detailed examination and characterization of coal surface chemistry is essential and literature data in this context is missing. We thus measured zeta potentials as a function of temperature (298–343 K), brine salinity (0 wt% NaCl–5 wt% NaCl) and salt type (NaCl, CaCl2 and MgCl2) for coals of low, medium and high ranks. Further, we measured water advancing and receding contact angles as a function of temperature and salinity for the same experimental matrix in order to associate wettability changes to the surface charge at the coal/brine interface. Moreover, coal surfaces were investigated by Fourier transformed infrared (FTIR) spectroscopy and the surface functional groups responsible for a particular wetting behaviour were identified. We found that zeta potential increased with temperature, salinity and cation valency. Both advancing and receding contact angles decreased with temperature, and increased with salinity and cation valency irrespective of the coal rank. Finally the XRD measurements and infrared spectra revealed that the presence of polar surface functional groups (e.g. Si OH and carboxylic acid groups) which is responsible for the hydrophilic behaviour of low rank coals and the absence of these groups in high rank coal is responsible for their hydrophobic behaviour even at lower pressure. The high rank coal seams at high pressure are better for CO2 storage and methane recovery.

    Related items

    Showing items related by title, author, creator and subject.

    • CO2-wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery
      Arif, M.; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan (2016)
      Coal seams offer tremendous potential for carbon geo-sequestration with the dual benefit of enhanced methane recovery. In this context, it is essential to characterize the wettability of the coal–CO2–water system as it ...
    • CO2 Wettability of Shales and Coals as a Function of Pressure, Temperature and Rank: Implications for CO2 Sequestration and Enhanced Methane Recovery
      Arif, M.; Barifcani, Ahmed; Zubair, T.; Lebedev, Maxim; Iglauer, Stefan (2016)
      The underground geological CO 2 storage into oil and gas reservoirs and/or saline aquifers is a promosing technique to reduce anthropogenic greenhouse gas emissions which thus ensures clean environment. CO 2 can also be ...
    • The organic geochemistry of marine-influenced coals.
      Sandison, Carolyn M. (2001)
      The importance of organic sulphur fixation in the preservation of organic matter in humic coal-forming environments is demonstrated in this thesis. The transgression of coal depositional systems by marine waters during ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.