Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This article is published under the Open Access publishing model and distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0. Please refer to the licence to obtain terms for any further reuse or distribution of this work.
Collection
Abstract
Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA.We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence may prove to be a useful resource in future comparative analysis of plant pathogens.
Related items
Showing items related by title, author, creator and subject.
-
Williams, A.; Sharma, M.; Thatcher, L.; Azam, S.; Hane, James; Sperschneider, J.; Kidd, B.; Anderson, J.; Ghosh, R.; Garg, G.; Lichtenzveig, J.; Kistler, H.; Shea, T.; Young, S.; Buck, S.; Kamphuis, L.; Saxena, R.; Pande, S.; Ma, L.; Varshney, R.; Singh, K. (2016)Background: Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and ...
-
Deng, C.; Plummer, K.; Jones, Darcy; Mesarich, C.; Shiller, J.; Taranto, A.; Robinson, A.; Kastner, P.; Hall, N.; Templeton, M.; Bowen, J. (2017)© 2017 The New Zealand Institute for Plant and Food Research Limited. Background: Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, ...
-
Foley, R.; Gleason, C.; Anderson, J.; Hamann, T.; Singh, Karambir (2013)Rhizoctonia solani is an important soil-borne necrotrophic fungal pathogen, with a broad host range and little effective resistance in crop plants. Arabidopsis is resistant to R. solani AG8 but susceptible to R. solani ...