Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant

    Access Status
    Fulltext not available
    Authors
    Neale, P.
    Antony, A.
    Bartkow, M.
    Farre, M.
    Heitz, Anna
    Kristiana, Ina
    Tang, J.
    Escher, B.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Neale, Peta A. and Antony, Alice and Bartkow, Michael E. and Farre, Maria Jose and Heitz, Anna and Kristiana, Ina and Tang, Janet Y.M. and Escher, Beate I. 2012. Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant. Environmental Science & Technology. 46 (18): pp. 10317-10325.
    Source Title
    Environmental Science & Technology
    DOI
    10.1021/es302126t
    ISSN
    0013-936X
    URI
    http://hdl.handle.net/20.500.11937/2808
    Collection
    • Curtin Research Publications
    Abstract

    Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train.Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not yet being optimized for volatile DBPs. As such, the bioassays are useful as monitoring tools as they provide sensitive responses even at low DBP levels.

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.
      Tan, J.; Allard, Sebastien; Gruchlik, Yolanta; McDonald, S.; Joll, Cynthia; Heitz, Anna (2016)
      The impact of elevated bromide concentrations (399 to 750µg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen ...
    • Advanced water treatment technologies to minimise the formation of emerging disinfection by-products in potable water
      Nottle, Caroline E. (2013)
      As the international standards for drinking water become more stringent and the health guideline values for currently regulated disinfection by-products (DBPs) decrease, the challenge increases for water utilities to ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.