Grampian migmatites in the Buchan Block, NE Scotland
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This is the peer reviewed version of the following article: Johnson, T. and Kirkland, C. and Reddy, S. and Fischer, S. 2015. Grampian migmatites in the Buchan Block, NE Scotland. Journal of Metamorphic Geology. 33 (7): pp. 695–709, which has been published in final form at http://doi.org/10.1111/jmg.12147. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving at http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms
Collection
Abstract
Rocks exposed along the Scottish coast between Fraserburgh and Inzie Head contain information critical to understanding the evolution of the Buchan Block, the type locality for low-P, high-T regional metamorphism, and its relationship with the rest of the Grampian terrane, one of the major tectonostratigraphic components of the Scottish Caledonides. The ~8 km long section traverses a regional network of shear zones and, at the highest grades around Inzie Head, passes into the core of the Buchan Anticline, a large-scale open fold that is commonly regarded as a late structure, post-dating metamorphism. The metasedimentary rocks increase in grade from upper amphibolite to granulite facies and preserve unequivocal evidence for partial melting. The diatexite migmatites around Inzie Head, along with other gneissose units within the Buchan Block, have been regarded as allochthonous Precambrian basement rocks that were thrust into their current position during the Grampian orogenesis. However, field observations show that the onset of in situ partial melting in metapelitic rocks, which was associated with the formation of garnet-bearing aplites and associated pegmatites, occurred around Fraserburgh, where shear fabrics are absent.Thus, the rocks preserve a continuous metamorphic field gradient that straddles the shear zone network. This observation supports an alternative interpretation that anatexis was the result of mid-Ordovician (Grampian) metamorphism, rather than an older tectonothermal event, and that the Inzie Head gneisses are autochthonous. Using an average mid-Dalradian pelite as a plausible representative protolith, phase equilibria modelling satisfactorily reproduces the observed appearance and disappearance of key minerals providing that peritectic garnet produced with the first formed melts (represented by the garnet-bearing aplites) depleted the source rocks in Mn. The modelled metamorphic field gradient records a temperature increase of at least 150 °C (from ~650 °C near Fraserburgh to in excess of 800 °C at Inzie Head) but is isobaric at pressures of 2.7–2.8 kbar, suggesting the Buchan Anticline developed synchronous with partial melting. The Buchan Anticline is likely an expression of crustal thinning and asthenospheric upwelling, which produced voluminous gabbroic intrusions that supplied the heat for Buchan metamorphism.
Related items
Showing items related by title, author, creator and subject.
-
Johnson, Tim; Kirkland, Chris; Viete, D.; Fischer, S.; Reddy, Steven; Evans, Noreen; McDonald, Bradley (2016)The type locality for high-temperature, low-pressure regional metamorphism, the Buchan Block in NE Scotland, exhibits profound differences to the rest of the Grampian Terrane. These differences have led some to regard the ...
-
Sukhorukov, V.; Turkina, O.; Tessalina, Svetlana; Talavera, Cristina (2018)We report here for the first time the occurrence of sapphirine-bearing rocks within the Paleoproterozoic granulite complex of the Angara-Kan block (SW Siberian craton) and provide strong evidence for crustal metamorphism ...
-
De Waele, Bert (2004)The Irumide belt is an elongate crustal province characterised by Mesoproterozoic tectonism and magmatism that stretches over a distance of approximately 900 kilometers from central Zambia to the Zambia-Tanzania border ...