Show simple item record

dc.contributor.authorChen, D.
dc.contributor.authorChen, C.
dc.contributor.authorDong, F.
dc.contributor.authorShao, Zongping
dc.contributor.authorCiucci, F.
dc.date.accessioned2017-01-30T13:04:40Z
dc.date.available2017-01-30T13:04:40Z
dc.date.created2015-10-29T04:09:38Z
dc.date.issued2014
dc.identifier.citationChen, D. and Chen, C. and Dong, F. and Shao, Z. and Ciucci, F. 2014. Cobalt-free polycrystalline Ba0.95La0.05FeO3−δ thin films as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources. 250: pp. 188-195.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/28367
dc.identifier.doi10.1016/j.jpowsour.2013.11.010
dc.description.abstract

Ba0.95La0.05FeO3−δ (BLF) thin films as electrodes for intermediate-temperature solid oxide fuel cells are prepared on single-crystal yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition. The phase structure, surface morphology and roughness of the BLF thin films are characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy is used to analyze the compositions of the deposited thin film and the chemical state of transition metal. The dense thin film exhibits a polycrystalline perovskite structure with a low surface roughness and a high oxygen vacancy concentration on the surface. Ag (paste or strip) and Au (strip) are applied on both surfaces of the symmetric cells as current collectors to evaluate electrochemical performance of the thin films. The electrode polarization resistances of the symmetric cells are found to be lower than those of most cobalt-free thin-film electrodes, e.g., 0.437 Ω cm2 at 700 °C and 0.21 atm. The oxygen reduction reaction mechanism of the BLF cathode in symmetric cells is studied by electrochemical impedance spectroscopy thanks to the equivalent fitting analysis. Both the oxygen surface exchange reaction and charge transfer are shown to determine the overall oxygen reduction reaction.

dc.titleCobalt-free polycrystalline Ba0.95La0.05FeO3−δ thin films as cathodes for intermediate-temperature solid oxide fuel cells
dc.typeJournal Article
dcterms.source.volume250
dcterms.source.startPage188
dcterms.source.endPage195
dcterms.source.issn0378-7753
dcterms.source.titleJournal of Power Sources
curtin.departmentDepartment of Chemical Engineering
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record