Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3−δ

    Access Status
    Fulltext not available
    Authors
    Dong, F.
    Ni, M.
    He, W.
    Chen, Y.
    Yang, G.
    Chen, D.
    Shao, Zongping
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Dong, F. and Ni, M. and He, W. and Chen, Y. and Yang, G. and Chen, D. and Shao, Z. 2016. An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3−δ. Journal of Power Sources. 326: pp. 459-465.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2016.07.023
    ISSN
    0378-7753
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/28392
    Collection
    • Curtin Research Publications
    Abstract

    The B-site substitution with the minor amount of tin in BaFeO3−δ parent oxide is expected to stabilize a single perovskite lattice structure. In this study, a composition of BaFe0·95Sn0·05O3−δ (BFS) as a new cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized and characterized. Special attention is paid to the exploration of some basic properties including phase structure, oxygen non-stoichiometry, electrical conductivity, oxygen bulk diffusion coefficient, and surface exchange coefficient, which are of significant importance to the electrochemical activity of cathode materials. BFS holds a single cubic perovskite structure over temperature range of cell operation, determined by in-situ X-ray diffraction and scanning transmission electron microscope. A high oxygen vacancy concentration at cell operating temperatures is observed by combining thermo-gravimetric data and iodometric titration result. Furthermore, electrical conductivity relaxation measurement illustrates the fast oxygen bulk diffusion and surface exchange kinetics. Accordingly, testing cells based on BFS cathode material demonstrate the low polarization resistance of 0.033 Ω cm2 and high peak power density of 1033 mW cm−2 at 700 °C, as well as a relatively stable long-term operation for ∼300 h. The results obtained suggest that BFS perovskite oxide holds a great promise as an oxygen reduction electrocatalyst for IT-SOFCs.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaluation of Bi 2V 0.9Cu 0.1O 5.35-an Aurivillius-type conducting oxide-as a cathode material for single-chamber solid-oxide fuel cells
      Shao, Zongping; Mederos, J.; Kwak, C.; Haile, S. (2010)
      The compound Bi 2V 0.9Cu 0.1O 5.35, a typical Aurivillius-type fast oxygen ion conductor, was evaluated as a possible cathode material for single-chamber solid-oxide fuel cells operated under mixed propane and oxygen. The ...
    • A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells
      Zhou, W.; Wang, X.; Zhu, Y.; Dai, J.; Zhu, Y.; Shao, Zongping (2018)
      © 2018, Materials Review Magazine. All right reserved. The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and ...
    • Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
      Zhou, W.; Ran, R.; Shao, Zongping (2009)
      Solid-oxide fuel cells (SOFCs) convert chemical energy directly into electric power in a highly efficient way. Lowering the operating temperature of SOFCs to around 500-800 °C is one of the main goals in current SOFC ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.