Show simple item record

dc.contributor.authorTang, S.
dc.contributor.authorAmiri, A.
dc.contributor.authorPeriasamy, Vijay
dc.contributor.authorTade, Moses
dc.date.accessioned2017-01-30T13:04:51Z
dc.date.available2017-01-30T13:04:51Z
dc.date.created2016-02-08T19:30:16Z
dc.date.issued2016
dc.identifier.citationTang, S. and Amiri, A. and Periasamy, V. and Tade 2016. Development and validation of a computationally efficient pseudo 3D model for planar SOFC integrated with a heating furnace. Chemical Engineering Journal. 290: pp. 252-262.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/28407
dc.identifier.doi10.1016/j.cej.2016.01.040
dc.description.abstract

Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode–Electrolyte–Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V–I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.

dc.titleDevelopment and validation of a computationally efficient pseudo 3D model for planar SOFC integrated with a heating furnace
dc.typeJournal Article
dcterms.source.volume290
dcterms.source.startPage252
dcterms.source.endPage262
dcterms.source.issn1873-3212
dcterms.source.titleChemical Engineering Journal
curtin.departmentSchool of Chemical and Petroleum Engineering
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record