Show simple item record

dc.contributor.authorNam, N.M.
dc.contributor.authorAn, N.T.
dc.contributor.authorRector, B.
dc.contributor.authorSun, Jie
dc.date.accessioned2017-01-30T10:26:44Z
dc.date.available2017-01-30T10:26:44Z
dc.date.created2015-01-13T20:00:41Z
dc.date.issued2014
dc.identifier.citationNam, N.M. and An, N.T. and Rector, R.B. and Sun, J. 2014. Nonsmooth algorithms and Nesterov’s smoothing technique for generalized Fermat–Torricelli problems. SIAM Journal on Optimization. 24 (4): pp. 1815-1839.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/2852
dc.identifier.doi10.1137/130945442
dc.description.abstract

We present algorithms for solving a number of new models of facility location which generalize the classical Fermat–Torricelli problem. Our first approach involves using Nesterov’s smoothing technique and the minimization majorization principle to build smooth approximations that are convenient for applying smooth optimization schemes. Another approach uses subgradient-type algorithms to cope directly with the nondifferentiability of the cost functions. Convergence results of the algorithms are proved and numerical tests are presented to show the effectiveness of the proposed algorithms.

dc.publisherSociety for Industrial and Applied Mathematics
dc.subjectMM principle
dc.subjectNesterov’s smoothing technique
dc.subjectgeneralized Fermat–Torricelli problem
dc.subjectsubgradient-type algorithms
dc.subjectNesterov’s accelerated gradient - method
dc.titleNonsmooth algorithms and Nesterov’s smoothing technique for generalized Fermat–Torricelli problems
dc.typeJournal Article
dcterms.source.volume24
dcterms.source.number4
dcterms.source.startPage1815
dcterms.source.endPage1839
dcterms.source.issn1052-6234
dcterms.source.titleSIAM Journal on Optimization
curtin.note

Copyright © 2014 Society for Industrial and Applied Mathematics. Reproduced with permission

curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record