Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Solar ultraviolet radiation and ozone depletion-driven climate change: Effects on terrestrial ecosystems

    237168_237168.pdf (2.962Mb)
    Access Status
    Open access
    Authors
    Bornman, Janet
    Barnes, P.
    Robinson, S.
    Ballare, C.
    Flint, S.
    Caldwell, M.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bornman, J. and Barnes, P. and Robinson, S. and Ballare, C. and Fling, S. and Caldwell. 2015. Solar ultraviolet radiation and ozone depletion-driven climate change: Effects on terrestrial ecosystems. Photochemical & Photobiological Sciences. 14 (1): pp. 88-107.
    Source Title
    Photochemical & Photobiological Sciences
    DOI
    10.1039/c4pp90034k
    ISSN
    1474-905X
    School
    CBS Faculty Operations
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/3.0/

    URI
    http://hdl.handle.net/20.500.11937/28562
    Collection
    • Curtin Research Publications
    Abstract

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants across the Southern Hemisphere. Such research has broadened our understanding of the linkages that exist between the effects of ozone depletion, UV-B radiation and climate change on terrestrial ecosystems.

    Related items

    Showing items related by title, author, creator and subject.

    • Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change
      Ballare, C.; Caldwell, M.; Flint, S.; Robinson, S.; Bornman, Janet (2011)
      Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground surface. In thisassessment we summarize the results of previous work on the effects of the UV-B component(280–315 nm) on terrestrial ...
    • Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors
      Caldwell, M.; Bornman, Janet; Ballare, C.; Flint, S.; Kulandaivelu, G. (2007)
      There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting ...
    • Solar ultraviolet radiation in a changing climate
      Williamson, C.; Zepp, R.; Lucas, R.; Madronich, S.; Austin, A.; Ballaré, C.; Norval, M.; Sulzberger, B.; Bais, A.; McKenzie, R.; Robinson, S.; Häder, D.; Paul, N.; Bornman, Janet (2014)
      The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.